• Title/Summary/Keyword: Quad tree

Search Result 107, Processing Time 0.024 seconds

Hierarchical Circuit Extract Algorithm for VLSI Design Verification (VLSI의 설계검증을 위한 계층적 회로 추출 알고리듬)

  • 임재윤;임인칠
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.998-1009
    • /
    • 1988
  • A Hierarchical Circuit Extract Algotithm, which efficiently extract circuits from VLSI mask pattern information, is programmed. Quad-tree is used as a data structure which includes various CIF circuit elements and instances. This system is composed of CIF input routine, Quad-tree making routine, Transistor finding routine and Connection list making routine. This circuit extractor can extract circuit with hierarchical structure of circuit. This system is designed using YACC and LEX. By programming this algorithm with C language and adopting to various circuits, the effectiveness of this algorithm is showed.

  • PDF

Simplification of LIDAR Data for Building Extraction Based on Quad-tree Structure

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.355-356
    • /
    • 2011
  • LiDAR data is very large, which contains an amount of redundant information. The information not only takes up a lot of storage space but also brings much inconvenience to the LIDAR data transmission and application. Therefore, a simplified method was proposed for LiDAR data based on quad-tree structure in this paper. The boundary contour lines of the buildings are displayed as building extraction. Experimental results show that the method is efficient for point's simplification according to the rule of mapping.

Quad-tree Segmentation using Fractal Dimension based on Accurate Estimation of Noise and Its Application (잡음의 정확한 추정 기반 프랙탈 차원 쿼드트리 영역분할과 응용)

  • Koh, Sung-Shik;Kim, Chung-Hwa
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.35-41
    • /
    • 2002
  • There are many image segmentation methods having been published as the results of research so far, but it is difficult to be partitioned to each similar range that should be extracted into the accurate parameters of image information on the images with noises. Also if it is used to fractal coding, according to amount of noise in image, the image segmentation leads to decreasing of the compression ratio. In this paper, we propose the new quad-tree image segmentation using the box-counting dimension which can estimate the effective image information parameters against the noise properties and apply this method to fractal image coding. As the result of simulation, we confirm that the image segmentation is improved to 31.10% for parameter detection of image information and compression ratio is enhanced to 38.93% for fractal image coding when tested on 10% Gaussian white noise image by the proposed quad-tree method compared with method using existing quad-tree. 

Photo Mosaics using Quad-tree structure on GPU (사진트리 구조를 이용한 포토 모자이크의 GPU구현)

  • Yang, Jin-Suk;Joo, Choong-Jae;Oh, Kyoung-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Photomosaic is a method of representation an input image in forms of mosaics by a set of small tile images. Generally, equal rectangular tiles are used in photo mosaics. Therefore, there are limitations to expression of mosaic according to characteristic of images. In this paper, photo mosaics using quad-tree structure is proposed to create tiles in varies sizes. Initially, color variance per each level of an input image is computed using the mipmap of graphic hardware. Depending on the value of Valiance, the input image is divided into tiles in varies sizes. Each tile finds the most similar reference image and replaces with it. As a result, the method provides another pictorial effectiveness by dividing the input image into tiles in varies sizes depending on color held by the input image. In addition, whole processing is done on the graphic hardware and thereby we achieve faster performance.

Performance Analysis for Digital watermarking using Quad-Tree Algorithm based on Wavelet Packet (웨이블렛 패킷 기반 쿼드트리 알고리즘을 이용한 디지털 워터마킹의 성능 분석)

  • Chu, Hyung-Suk;Kim, Han-Kil;An, Chong-Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.310-319
    • /
    • 2010
  • In this paper, digital watermarking method using wavelet transform and quad-tree algorithm is proposed. The proposed algorithm transforms the input image by DWT(Discrete Wavelet Transform) and AWPT(Adaptive Wavelet Packet Transform), inserts the watermark by quad-tree algorithm and the Cox's algorithm. The simulation for performance analysis of the proposed algorithm is implemented about the effect of embedding watermark in each subband coefficient (HH, LH, HL) of DWT, each DWT level, and each AWPT level. The simulation result by using DWT is compared with that using AWPT in the proposed algorithm. In addition, the effect of embedding watermark in the lowest frequency band (LL) is simulated. As a simulation result using DWT, the watermarking performance of simultaneously embedding in HH, LH, and HL band of DWT(6 level) is better than that of different cases. The result of AWPT(3 level) improves the correlation value compared to that of DWT(3 level). In addition, insertion the watermark to the LL band about 30~60% of all watermarks improves the correlation value while PSNR performance decreases 1~2dB.

Quad Tree Based 2D Smoke Super-resolution with CNN (CNN을 이용한 Quad Tree 기반 2D Smoke Super-resolution)

  • Hong, Byeongsun;Park, Jihyeok;Choi, Myungjin;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • Physically-based fluid simulation takes a lot of time for high resolution. To solve this problem, there are studies that make up the limitation of low resolution fluid simulation by using deep running. Among them, Super-resolution, which converts low-resolution simulation data to high resolution is under way. However, traditional techniques require to the entire space where there are no density data, so there are problems that are inefficient in terms of the full simulation speed and that cannot be computed with the lack of GPU memory as input resolution increases. In this paper, we propose a new method that divides and classifies 2D smoke simulation data into the space using the quad tree, one of the spatial partitioning methods, and performs Super-resolution only required space. This technique accelerates the simulation speed by computing only necessary space. It also processes the divided input data, which can solve GPU memory problems.

A Context-based Fast Encoding Quad Tree Plus Binary Tree (QTBT) Block Structure Partition

  • Marzuki, Ismail;Choi, Hansol;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.175-177
    • /
    • 2018
  • This paper proposes an algorithm to speed up block structure partition of quad tree plus binary tree (QTBT) in Joint Exploration Test Model (JEM) encoder. The proposed fast encoding of QTBT block partition employs three spatially neighbor coded blocks, such as left, top-left, and top of current block, to early terminate QTBT block structure pruning. The propose algorithm is organized based on statistical similarity of those spatially neighboring blocks, such as block depths and coded block types, which are coded with overlapped block motion compensation (OBMC) and adaptive multi transform (AMT). The experimental results demonstrate about 30% encoding time reduction with 1.3% BD-rate loss on average compared to the anchor JEM-7.1 software under random access configuration.

  • PDF

A Adaptive Rendering Image Processing for Based on the Mobile (모바일을 기반으로 하는 적응적인 렌더링 영상 처리)

  • Ju, Heon-Sig;Kim, Ha-Jin
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.425-432
    • /
    • 2003
  • This paper presents an EMR(Electronic Medical Record) chart for efficient PDA through the quad tree image rendering based on the mobile. Using the intermediate image space algorithm instead of the final one for volume rendering, we have solved the probems of th eholes coming from the point-to-point to mapping. The quad-tree based on the delta-tree efficiently represents volume expressions and results in higher compression effects. With the volume rendering, we can decrease the rendering time and get a higher quality and efficiency for PDA through image based rendering.

Place Recognition Method Using Quad Vocabulary Tree (쿼드 어휘 트리를 이용한 장소 인식 방법)

  • Park, Seoyeong;Hong, Hyunki
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.569-577
    • /
    • 2016
  • Place recognition for LBS (Location Based Service) has been one of the important techniques for user-oriented service. FLANN (Fast Library for performing Approximate Nearest Neighbor) of place recognition with image features is fast, but it is affected much by environmental condition such as occlusions. This paper presents a place recognition method using quad vocabulary tree with SURF (Speeded Up Robust Features). In learning stage, an image is represented with spatial pyramid of three levels and vocabulary trees of their sub-regions are constructed. Query image is matched with the learned vocabulary trees in each level. The proposed method measures homography error of the matched features. By considering the number of inliers in sub-region, we can improve place recognition performance.

Video Subband Coding using Quad-Tree Algorithm (쿼드트리 알고리즘을 이용한 비디오 서브밴드 코딩)

  • An, Chong-Koo;Chu, Hyung-Suk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • This paper presents the 3D wavelet based video compression system using quad-tree algorithm. The 3D wavelet based video compression system removes the temporal correlation of the input sequences using the motion compensation filter and decomposes the spatio-temporal subband using the spatial wavelet transform. The proposed system allocates the higher bit rate to the low frequency image of the 3D wavelet sequences and improves the 0.64dB PSNR performance of the reconstructed image in comparison with that of H.263. In addition to the limitation on the propagation of the motion compensation error by the 3D wavelet transform, the proposed system progressively transmits the input sequence according to the resolution and rate scalability.

  • PDF