• Title/Summary/Keyword: QuEChERS method

Search Result 78, Processing Time 0.021 seconds

Evaluation of Cyantraniliprole Residues Translocated by Lettuce, Spinach and Radish (상추, 시금치 및 알타리무에 의한 Cyantraniliprole의 흡수이행 잔류량 평가)

  • Yoon, Ji Hyun;Lee, Seung Won;Lim, Da Jung;Kim, Seon Wook;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • BACKGROUND: Cyantraniliprole is a systemic diamide insecticide that has been used to control lepidopteran pests in agriculture. Cyantraniliprole has become an issue due to its potentiality of unexpectable contamination in rotational crop cultivation. Thus, studies on the evaluation of cyantraniliprole translocated from soil into rotational crops are required. METHODS AND RESULTS: Cyantraniliprole was treated at a yearly maximum application level onto bare soil under greenhouse conditions in two geographically different regions. Lettuce was transplanted and spinach and radish were sown onto the soil 30 and 60 days-plant back intervals (PBIs) after cyantraniliprole treatment. The QuEChERS method was modified and coupled with LC/MS/MS analysis to determine the residues of cyantraniliprole in soil and plant samples. The methods for sample preparation and instrumental conditions were validated to meet the criteria of Codex guidelines and were successful to determine cyantraniliprole quantitatively and qualitatively in the samples. Cyantraniliprole residues in lettuce samples were 0.01 mg/kg for PBI 60 and 0.02 mg/kg for PBI 30, respectively. The residues in spinach samples were 0.01 mg/kg for PBI 60 and 0.01~0.02 mg/kg for PBI 30, respectively. Less than limit of the quantitation (LOQ) level (0.01 mg/kg) of cyantraniliprole was observed in radish samples. The residues in the plant samples were found as the levels less than maximum residue limit (MRL) for leafy and root vegetables. CONCLUSION(S): This study suggests PBI 30~60 days for rotational cultivation of lettuce, spinach and radish in greenhouse soil treated with cyantraniliprole at a yearly maximum application level.

Monitoring of Pesticide Residues in Commonly Consumed Medicinal Agricultural Products (다소비 식·약공용농산물의 잔류농약 실태조사)

  • Hee-Jeong Choi;Yun-Sung Kim;Sang-Tae Kim;Nan-Joo Park;Yu-Mi Choi;Na-Young Yoo;Yoo-Li Han;Jeong-Hwa Seo;Jong-Sung Son;Myoung-Ki Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.112-122
    • /
    • 2023
  • We assessed the pesticide residues in the medicinal agricultural products distributed in Korea. Pesticide residues in 72 samples were analyzed using the QuECheRS method for 339 pesticides, using GC-MS/MS and LC-MS/MS. The pesticide residues were below the maximum residues limit (MRL) in 42 samples (58.3%); however, they exceeded the MRL in 5 samples (6.9%). These included 43 types of pesticides; 20 fungicides and 23 insecticides were detected 75 times and 58 times, respectively. Tebuconazole and carbendazim were the most detected fungicides, each 11 times. The levels of acetamiprid, cadusafos, chlorpyrifos, flubendiamide, fluopyram, and triazophos exceeded the MRL in Gogi berry, Omija, and Reishi mushroom. All of them were positive list system (PLS) items that lacked pesticide residue standards. Therefore, authorities should monitor the distributed medicinal agricultural products.

Monitoring of Residual Pesticides and Exposure Assessment of Olive Oil Products Sold on the Market (올리브유의 잔류농약 모니터링 및 노출량 조사)

  • Mi-Hui Son;Jae-Kwan Kim;You-Jin Lee;Ji-Eun Kim;Eun-Jin Baek;Byeong-Tae Kim;Seong-Nam Lee;Myoung-Ki Park;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.211-216
    • /
    • 2023
  • A total of 100 commercially available olive oil products were analyzed for 179 pesticide residues using gas chromatography-tandem mass spectrometry (GC/MS/MS). The olive oil samples were mixed with organic solvents, centrifuged and frozen to remove fat, and pesticide residues were analyzed using the "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) method. The determination coefficient (R2) of the analysis method used in this study was ≥0.998. The detection limit of the method ranged 0.004-0.006 mg/kg and its quantitative limit ranged 0.012-0.017 mg/kg. The recovery rate (n=5) measured at the level ranging 0.01-0.02, 0.1, and 0.5 mg/kg ranged 66.8-119.5%. The relative standard deviation (RSD) was determined to be ≤5.7%, confirming that this method was suitable for the "Guidelines for Standard Procedures for Preparing Food Test Methods". The results showed that a total of 151 pesticides (including difenoconazole, deltamethrin, oxyfluorfen, kresoxim-methyl, phosmet, pyrimethanil, tebuconazole, and trifloxystrobin) were detected in 64 of the 100 olive oil products. The detection range of these pesticide residues was 0.01-0.30 mg/kg. The percentage acceptable daily intake (%ADI) of the pesticides calculated using ADI and estimated daily intake (EDI) was 0.0001-0.1346, indicating that the detected pesticides were present at safe levels. This study provides basic data for securing the safety of olive oil products by monitoring pesticide residues in commercially available oilve oil products. Collectively, the analysis method used in this study can be used as a method to analyze residual pesticides in edible oils.

Development and Validation of Analytical Method for Determination of Biphenyl Analysis in Foods (식품 중 비페닐 분석법 개발 및 유효성 검증)

  • Kim, Jung-Bok;Kim, Myung-Chul;Song, Sung-Woan;Shin, Jae-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.459-464
    • /
    • 2017
  • Biphenyl is used as an intermediate in the production of crop protection products, a solvent in pharmaceutical production, and as a component in the preservation of citrus fruits in many countries. Biphenyl is not authorized for use and also does not have standards or specifications as a food additive in Korea. National and imported food products are likely to contain biphenyl. Therefore, control and management of these products is required. In this study, a simple analytical method was developed and validated using HPLC to determine biphenyl in food. These methods are validated by assessing certain performance parameters: linearity, accuracy, precision, recovery, limit of detection (LOD), and limit of quantitation (LOQ). The calibration curve was obtained from 1.0 to $100.0{\mu}g/mL$ with satisfactory relative standard deviations (RSD) of 0.999 in the representative sample (orange). In the measurement of quality control (QC) samples, accuracy was in the range of 95.8~104.0% within normal values. The inter-day and inter-day precision values were less than 2.4% RSD in the measurement of QC samples. Recoveries of biphenyl from spiked orange samples ranged from 92.7 to 99.4% with RSD between 0.7 and 1.7% at levels of 10, 50, and $100{\mu}g/mL$. The LOD and LOQ were determined to be 0.04 and $0.13{\mu}g/mL$, respectively. These results show that the developed method is appropriate for biphenyl identification and can be used to examine the safety of citrus fruits and surface treatments containing biphenyl residues.

Study for Residue Analysis of Herbicide, Clopyralid in Foods (식품 중 제초제 클로피랄리드(Clopyralid)의 잔류 분석법)

  • Kim, Ji-young;Choi, Yoon Ju;Kim, Jong Su;Kim, Do Hoon;Do, Jung Ah;Jung, Yong Hyun;Lee, Kang Bong;Kim, Hyo Chin
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND: Pesticide residue analysis is an essential activity in order to establish the food safety of agricultural products. Analytical approaches to the food safety are required to meet internationally the guideline of Codex (Codex Alimentarius Commission, CAC/GL 40). In this study, we developed a liquid chromatograph-tandem mass spectrometer (LC-MS/MS) method to determine the herbicide clopyralid in food matrixes. METHODS AND RESULTS: Clopyralid was extracted with aqueous acetonitrile containing formic acid and the extracts were mixed in a citrate buffer consisted of magnesium sulfate anhydrous, NaCl, sodium citrate dihydrate and disodium hydrogencitrate sesquihydrate followed by centrifugation. The supernatants were filtered through a nylon membrane filter and used for the analysis of clopyralid. The method was validated by accuracy and precision experiments on the samples fortified at 3 different levels of clopyralid. LC-MS/MS in positive mode was employed to quantitatively determine clopyralid in the food samples. Matrix-matched calibration curves were inearranged from 0.001 to 0.25 mg/kg with r2 > 0.994. The limits of detection and quantification were determined to be 0.001 and 0.01 mg/kg, respectively. There covery values of clopyralid for tified at 0.01 mg/kg in the control samples ranged from approximately 82 to 106% with relative standard deviations below 2 0%. CONCLUSION: The method developed in this study meets successfully the Codex guideline for pesticide residue analysis in food samples. This, the method could be applicable to determine pesticides in foods produced domestically and internationally.

Monitoring of Pesticide Residues and Heavy Metals in Fermented Liquor in Ulsan (울산지역 유통 발효주의 잔류농약 및 중금속 실태조사)

  • Hee-Jung Kim;Kyoung-Jin Kim;Min-Kyung Kim;Geum-Bi Kim;Su-Hee Kim;Young-Kyung Jo;Ju-Eun Park;So-Yeon Jeong;Won-Dug Seo;Young-Sun Choi
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.250-259
    • /
    • 2024
  • In this study, we investigated in pesticide residues and heavy metals in fermented liquor products (wine, beer, makgeolli). Targeted analysis of 400 pesticide residues in the sample was performed using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method, followed by gas chromatography-tandem mass spectrometry (MS/MS) and LC-MS/MS. The contents of heavy metals (Pb, Cd) were determined by ICP-MS using the microwave method. The mercury was measured using a mercury analyzer. From the analysis of 150 cases, 102 (68.0%) cases of fermented liquor were detected, and 35 pesticide residues (including metalaxyl, mandipropamid, azoxystrobin, and fenhexamid) were detected among the 400 pesticide residues tested. Pb, Cd, and Hg were tested in 150 samples. Lead was detected in 73 samples (48.7%), cadmium in 9 samples (6.0%), and mercury in 36 samples (24.0%). Exposure assessment was conducted to determine the safety of the detected pesticide residues and heavy metals. According to this assessment, the pesticide residues and heavy metals showed very low %ADI values (less than 1%).

Residual Characteristics and Monitoring of Cyenopyrafen and Cyflumetofen in Strawberries for Export (수출딸기 중 Cyenopyrafen과 Cyflumetofen의 잔류소실 특성평가 및 잔류농약 모니터링)

  • Kim, Yeong-Jin;Kim, Jong-Hwan;Kwon, Young-Sang;Song, Jong-Wook;Seo, Jong-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.279-287
    • /
    • 2017
  • BACKGROUND: Many farmers who cultivate the strawberries for export have used agricultural chemicals which MRL (Maximum Residue Limits) of main export target countries or simultaneous multi-residue analysis in Korea have not been established. Among them, the cyenopyrafen and cyflumetofen were selected and applied to this study to determine the PHI (pre-harvest interval) which is appropriate to the PLS (Positive List System) criterion (0.01 mg/kg) and to investigate the residual amounts in the samples. In addition, Fifty pesticides were monitored to check up whether it is suitable or not for main export target countries. METHODS AND RESULTS: Cyenopyrafen and cyflumetofen were spayed out to the strawberries. Samples for residual analyses were taken for maximum 60 days. After sampling, they were extracted by the QuEChERS method and analyzed using the LC-MS/MS. Cyenopyrafen and cyflumetofen were detected in a range of 0.0106~2.6517 mg/kg and of 0.0005~1.4480 mg/kg, respectively. From this results, they were found to be suitable for PLS concentration after 30 or 45 days after spray. In addition, they were detected in most samples that were selected at random. Their concentrations were higher than the PLS criterion in the maximum twenty samples. Twelve of pesticides unsuitable for main export target countries have been detected in the monitoring of simultaneous multi-residue analysis. The result indicates they are unsuitable for export since they excesses over PLS criterion. CONCLUSION: The monitoring result showed it is necessary to establish the pesticide standards of safe use suitable for the PLS criterion. In addition, it is considered continues management and inspection are needed to solve problems caused by unsuitable pesticides in export strawberries.

Development of a Simultaneous Analytical Method for Determination of Insecticide Broflanilide and Its Metabolite Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살충제 Broflanilide 및 대사물질 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Kim, Ji-Young;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • An analytical method was developed for the determination of broflanilide and its metabolites in agricultural products. Sample preparation was conducted using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method and LC-MS/MS (liquid chromatograph-tandem mass spectrometer). The analytes were extracted with acetonitrile and cleaned up using d-SPE (dispersive solid phase extraction) sorbents such as anhydrous magnesium sulfate, primary secondary amine (PSA) and octadecyl ($C_{18}$). The limit of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. The recovery results for broflanilide, DM-8007 and S(PFP-OH)-8007 ranged between 90.7 to 113.7%, 88.2 to 109.7% and 79.8 to 97.8% at different concentration levels (LOQ, 10LOQ, 50LOQ) with relative standard deviation (RSD) less than 8.8%. The inter-laboratory study recovery results for broflanilide and DM-8007 and S (PFP-OH)-8007 ranged between 86.3 to 109.1%, 87.8 to 109.7% and 78.8 to 102.1%, and RSD values were also below 21%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food and Drug Safety Evaluation guidelines (2016). Therefore, the proposed analytical method was accurate, effective and sensitive for broflanilide determination in agricultural commodities.