• Title/Summary/Keyword: Qanat

Search Result 3, Processing Time 0.022 seconds

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.

Review of Ancient Wisdom of Qanat, and Suggestions for Future Water Management

  • Taghavi-Jeloudar, Mohsen;Han, Mooyoung;Davoudi, Mohammad;Kim, Mikyeong
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.57-63
    • /
    • 2013
  • Arid areas have a significant problem with water supply due to climate change and high water demand. More than 3,000 years ago, Persians started constructing elaborate tunnel systems called Qanat for extracting groundwater for agriculture and domestic usages in arid and semi-arid areas and dry deserts. In this paper, it has been demonstrated that ancient methods of water management, such as the Qanat system, could provide a good example of human wisdom to battle with water scarcity in a sustainable manner. The purpose of this paper is twofold: Review of old wisdom of Qanat-to review the history of this ancient wisdom from the beginning until now and study the Qanat condition at the present time and to explore why (notwithstanding that there are significant advantages to the Qanat system), it will no longer be used; and suggestions for future water management-to suggest a number of new methods based on new materials and technology to refine and protect Qanats. With these new suggestions it could be possible to refine and reclaim this method of extracting water in arid areas. Also, a new multi-purpose water management model has been introduced based on rainwater infiltration management over the Qanat system as the model can be applied either in dry or wet cities to solve current urban water problems.

Ab-Anbar, the Ancient Underground Water Houses of Iran

  • Yazdi, J. Tababaee;Han, Moo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1438-1441
    • /
    • 2008
  • Throughout the history, the people of Iran have battled the dryness by innovations to preserve every drop of water that lands from the rare clouds, or from a stream flowing out of distant springs. Water is precious and held with highest respect, whether stored for drinking at an Ab-Anbar, or for washing and farming at the Houz in the middle of their oasis homes and orchards, or sourced at a Qanat spring or Jooy under ground. How it is that drinking water as cold as a mountain fall is found in desert of Iran? Ab-Anbar is an ancient means of water preservation and cooling through anunderground building structure. These underground structures have been present in Khorasan and other desert provinces of Iran as public or private water storage facilities, widely used before the installation of public plumbing systems in the late 1950s. Although many of these structures are still functional, most have been protected by government for restoration or viewing by the public as historical heritage. Khorasan natural dry climate and the massive surrounding deserts have been a breeding ground for many designs of Ab-Anbars. Today the existing number of such facilities stands in the province of Khorasan. Usually these structures were built in populated areas, also there are some forms of such structures on old trade routes and roadways leading to and from populated towns. This paper considers the history of Ab-Anbars in Khorasan as well as other relevant aspects such as types, components, construction methods and materials, filling and withdrawal systems.

  • PDF