• Title/Summary/Keyword: QZS isolator

Search Result 4, Processing Time 0.028 seconds

Quasi-zero-stiffness Characteristic of a Passive Isolator Using Flexures under Compression Force (압축력이 작용하는 유연보를 이용한 수동 제진기의 준영강성 특성)

  • Kim, Kyoung-Hong;Ahn, Hyeong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.321-321
    • /
    • 2009
  • This paper presents quasi-zero-stiffness (QZS) characteristic of a passive isolator using flexures under compression force. The passive isolator consists of a positive stiffness element (a vertical coil spring) and a negative stiffness element (flexures under compression force), and their proper combination of the positive and negative stiffness elements can produce both substantial static and zero dynamic stiffness, so called QZS. Firstly, a nonlinear dimensionless expression of a flexure under compression force is derived. A dynamic model of the passive isolator is developed and numerical simulations of its time and frequency response are performed. Then, undesirable nonlinear vibration is quantified using a period doubling bifurcation diagram and a Poincare's map of the isolator under forced excitation. Finally, experiments are performed to validate the QZS characteristic of the passive isolator.

  • PDF

A passive vibration isolator with bio-inspired structure and inerter nonlinear effects

  • Jing Bian;Xu-hong Zhou;Ke Ke;Michael CH Yam;Yu-hang Wang;Yue Qiu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.221-238
    • /
    • 2023
  • This paper developed and examined a novel passive vibration isolator (i.e., "X-inerter") motivated by combining a bio-inspired structure and a rack-pinion inerter. The bio-inspired structure provided nonlinear stiffness and damping owing to its geometric nonlinearity. In addition, the behavior was further enhanced by a gear inerter that produced a special nonlinear inertia effect; thus, an X-inerter was developed. As a result, the X-inerter can achieve both high-static-low-dynamic stiffness (HSLDS) and quasi-zero stiffness (QZS), obtaining ultra-low frequency isolation. Furthermore, the installed inerter can produce a coupled nonlinear inertia and damping effect, leading to an anti-resonance frequency near the resonance, wide isolation region, and low resonance peak. Both static and dynamic analyses of the proposed isolator were conducted and the structural parameters' influence was comprehensively investigated. The X-inerter was proven to be comparatively more stable in the ultra-low frequency than the benchmarking QZS isolator due to the nonlinear damping and inertia properties. Moreover, the inertia effect could suppress the bio-inspired structure's super- and sub-harmonic resonance. Therefore, the X-inerter isolator generally possesses desirable nonlinear stiffness, nonlinear damping, and unique nonlinear inertia, designed to achieve the ultra-low natural frequency, the anti-resonance property, and a wide isolation region with a low resonance peak.

A novel prismatic-shaped isolation platform with tunable negative stiffness and enhanced quasi-zero stiffness effect

  • Jing Bian;Xuhong Zhou;Ke Ke;Michael C.H. Yam;Yuhang Wang;Zi Gu;Miaojun Sun
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.213-227
    • /
    • 2023
  • A passive prismatic-shaped isolation platform (PIP) is proposed to realize enhanced quasi-zero stiffness (QZS) effect. The design concept uses a horizontal spring to produce a tunable negative stiffness and installs oblique springs inside the cells of the prismatic structure to provide a tunable positive stiffness. Therefore, the QZS effect can be achieved by combining the negative stiffness and the positive stiffness. To this aim, firstly, the mathematical modeling and the static analysis are conducted to demonstrate this idea and provide the design basis. Further, with the parametric study and the optimal design of the PIP, the enhanced QZS effect is achieved with widened QZS range and stable property. Moreover, the dynamic analysis is conducted to investigate the vibration isolation performance of the proposed PIP. The analysis results show that the widened QZS property can be achieved with the optimal designed structural parameters, and the proposed PIP has an excellent vibration isolation performance in the ultra-low frequency due to the enlarged QZS range. Compared with the traditional QZS isolator, the PIP shows better performance with a broader isolation frequency range and stable property under the large excitation amplitude.