• Title/Summary/Keyword: QUAL2E

Search Result 124, Processing Time 0.036 seconds

Determing the Instream Flow of Yongdam Dam Downstream for the Conservation of Water Quality (용담댐 하류의 하천수질보전을 위한 필요유량 산정 방안)

  • Choi, Si-Jung;Seo, Jae-Seung;Lee, Dong-Ryul;Kang, Seong-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2148-2152
    • /
    • 2009
  • 하천수질보전을 위한 필요유량은 하천유지유량 항목 중 하나로써 환경기초시설 등으로 최대한 처리한 후 남는 오염부하량을 고려하여 적정 수질을 유지하는데 필요한 유량을 의미한다. 하천수질보전을 위한 필요 유량을 산정하는 절차는 (1) 수질특성 파악 및 평가대상 항목의 선정, (2) 목표연도 및 목표수질 기준 설정, (3) 오염부하량 조사 및 목표연도별 오염부하량 산정, (4) 수질예측모형의 선정 및 수질예측, (5) 목표수질과의 비교 및 필요유량의 설정으로 이루어질 수 있다. 현재 우리나라에서는 수질평가 항목으로 여러 가지가 제시되어 있지만 주로 생물화학적 산소요구량(BOD)만으로 목표수질을 설정하고 있는 실정이며, 수질예측 모형으로써 QUAL2E 모형이 주로 이용되고 있다. 현재까지 고시된 하천유지유량은 대부분 기준갈수량 또는 평균갈수량이며 몇몇 지점이 하천생태계 및 하천수질보전을 위한 필요유량으로 고시된 바 있다. 본 연구에서는 국내 하천수질예측에 많이 이용하고 있는 QUAL2E 모형의 단점을 수정, 보완하고 보다 사용자가 쉽게 사용할 수 있도록 개발된 QUAL2K 모형을 이용하여 용담댐 하류의 하천수질보전을 위한 필요유량을 산정하였다. 과거에 산정된 하천수질보전을 위한 필요유량 산정치와 환경부에서 최근 제시하고 있는 금강오염총량관리 기본계획과의 비교를 통해 산정한 결과의 타당성을 분석해 보았으며 장래 발생할 수 있는 여러 가지 상황들을 시나리오로 구축하여 분석함으로써 보다 합리적인 결과를 도출하도록 노력하였다. 하천수질보전을 위한 필요유량 산정 시 하나의 경우에 대한 분석보다는 발생할 수 있는 여러 상황을 시나리오로 분석함으로써 의사결정자나 일반대중에게 보다 다양한 정책 방향성과 유량에 따른 하천수질변화에 대한 다양한 정보를 제공할 수 있을 것으로 판단된다.

  • PDF

Development of a Stream Water Quality Model (QUAL-NIER) for the Management of Total Maximum Daily Loads (수질오염총량관리를 위한 하천수질모델(QUAL-NIER) 개발)

  • Park, Jun Dae;Shin, Dong Seok;Kim, Moon Sook;Kong, Dong Soo;Rhew, Doug Hee;Jung, Dong-Il;Na, Eun Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.784-792
    • /
    • 2008
  • Greater focus must be placed on ensuring that the water quality model (WQM) reflects the objective of its application and the characteristics of the water environment properly before it is selected. In the development or application of WQM, various factors influencing the model predictions should be reviewed so that it can perform more properly and reasonably based on scientific theory. This study reviewed the characteristic of existing WQM and the domestic river environment to find the requirements of the model application for TMDLs management in Korea. In this study, a water quality model, QUAL-NIER, was developed based on the USEPA's QUAL2E. The core structure and reaction scheme of the model was established followed by the formulation of equations according to the scheme with some supplements on the reaction mechanisms which are necessary for domestic rivers. Algorithms on the equations were set up and programmed to form a computer-based model. The developed model, QUAL-NIER was applied to the main stem of the Nakdong river. The model was calibrated and verified to data measured in 2004. The model results displayed good agrement with the field measurements for both calibration and verification. From this study, it was concluded that the developed QUAL-NIER model was very powerful with regard to the water quality simulation in domestic rivers.

Application of the QUAL2E Model and Risk Assessment for Water Quality Management in Namyang Stream in Hwaong Polder (화옹유역 남양천의 수질관리를 위한 QUAL2E적용과 위해성 평가)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Kim, Hyung-Chul;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.110-118
    • /
    • 2006
  • The Namyang Stream in Hwaong polder was planned for several water uses including recreation, where people can contact the water and consume some amount during the recreational activity. A human health risk was assessed from exposure to E. coli in the Namyang Stream, which receives partially treated wastewater from watershed. The QUAL2E model was applied to simulate stream water quality, and this model was calibrated and verified with field monitoring data. The calibration result showed a high correlation coefficient of greater than 0.9. The mean concentration of E. coli in the Namyang Stream from the QUAL2E output was in the range of 5,000 ${\sim}$ 8,000 MPN 100 mL^{-1}$, which exceeded national and international guidelines. The Beta-Poisson was used to estimate the microbial risk of pathogens ingestion and the Monte-Carlo analysis (10,000 trials) was used to estimate the risk characterization of uncertainty. The Microbial risk assessment showed that the risk ranged from 7.9 ${\times}\;10^{-6}\;to\;9.4\;{\times}10^{-6}$. Based on USEPA guidelines, the range of $10^{-6}\;to\;10^{-8}$ was considered reasonable levels of risk for communicable disease transmission from environmental exposure, and the risk above $10^{-4}$ was considered to be in the danger of infection. Therefore, water quality of the Namyang Stream might not be in the danger of infection although it exceeded national and international guidelines. However, it was in the range of communicable disease transmission, and thorough wastewater collection and treatment at the source is recommended to secure safe recreation water quality.

Water Quality Modeling and Environmantal Capacity in the Seom River Basin (섬강유역 환경용량 및 수질 Modeling)

  • 허인량;오근찬;최지용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.80-86
    • /
    • 1998
  • Seom River was major branch of Namhan river, consist of primary basin that Wonjoo-city, Hoingsung-gun and primary contamination source was sewage from human lives. This study was evaluated production contamination loading of each branch basin and water quality grade and water quality simulation by QUAL2E to provide efficient contaminations source control. Rusult of survey, production loading of BOD, T-N, T-P were 26,591 kg/day, 4,560 kg/day, 731 kg/day resectively. Water quality analysis in 17 points of main stream were appeared that 1st grade(BOD 1 mg/l under) was 6 point, 2nd grade was 9 point and 3rd grade was 2 point. And result of water quality analysis for branch steram, first grade was evaluated 68.7%. Based of field data, calibration and verification result were in good agreement with mesured value within coefficient of variance were from 2.59% to 18.73%, from 6.39%, to 28.46%, respectively.

  • PDF

A Study on Water Quality Modeling for Autochthonous BOD Effect in Namgang Dam Downstream (자생 BOD 영향에 따른 남강댐 하류부 수질모델링 연구)

  • Hwang, Soo Deok;Lee, Sung Jun;Kim, Young Do;Kwon, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • The TMDL, the watershed-oriented water quality management policy, was introduced to inhibit the total amount of pollutant loading generation, and to develop the region environmentally friendly. However, despite the implementation of TMDL, the water quality of Nam river downstream has worsened continuously since 2005. Diverse pollution sources such as cities and industrial zone are scattered around the Nam river. Eutrophication are caused due to deterioration of water quality by low velocity. BOD concentrations in the eutrophic waters affected by the incoming BOD and the autochthonous BOD by the production of phytoplankton. In this study, the quantitative relation of incoming BOD and autochthonous BOD was analyzed for water quality management. The influence of autochthonous BOD was analyzed using QUALKO2 and QUAL2E. Considering the effects of Chl.a, BOD concentration from QUALKO2 model simulations is higher than BOD concentration from QUAL2E model. The results of QUALKO2 showed higher correlation with the measured data. Autochthonous BOD needs to be managed to solve the water pollution problem of Nam river downstream, which is looking for ways to reduce Chl.a by using the increase of the dam outflow and the improvement of the water quality from WWTP.

GIS Application for Rural Water Quality Management (농촌소유역 하천수질관리를 위한 GIS응용)

  • 김성준
    • Spatial Information Research
    • /
    • v.4 no.2
    • /
    • pp.147-157
    • /
    • 1996
  • A rural water quality management information system(RWQMIS) by integrating Geo¬graphic Information System(GIS) with the existing models (pollutants transport and river water quality) is described. A simple pollutant load model to calculate delivered pollutants to stream, Tank model to generate daily runoff and QUAL2E model to predict river water quality, were incorporated into GIS. The system was applied to $80km^2$ watershed in Icheon Gun and Yongin Gun, Kyonggi Do. The spatial distributions of produced pollutant load, discharged pollutant load, delivered ratio to the stream, and the river water quality status for given sites were successfully generated.

  • PDF

A Comparison Between Reduction Methods for BOD Loadings to Achieve Water Quality Standards at the End of the Yeongsan River (영산강 하류부의 목표수질 달성을 위한 BOD 부하량 삭감방법의 비교)

  • 황대호;정효준;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • The key point in establishing water quality management measures is how to decide the load reduction for pollution sources. This study was performed to compare reduction methods for BOD loadings to achieve water quality standards at the end of the Yeongsan river. The target year is 2006 and 2011 and reduction methods are uniform treatment and treatment by influence rate. Using QUAL2E model, the study was performed under the conditions of establishing and non-establishing the publicly owned treatment works(POTWs). Uniform treatment which allocate the same reduction rate to pollution sources showed that all streams into the river should be applied for the reduction. However, treatment by influence rate which allocate the reduction rate by the order of influence rate showed that achieving target quality might be possible with a few streams for the reduction. But total amount of load reduction of streams was not significantly different from two methods.

  • PDF

Estimation of Reservoir Discharge to Support TMDL Management in the Geum River Basin (금강수계 오염총량관리를 고려한 저수지 방류량산정)

  • Noh Joon-Woo;Kim Soo-Jun;Kim Jeong-Kon;Koh Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.627-636
    • /
    • 2006
  • This study estimates adequate discharge to meet the specified target water quality concentration using the pollutant load of the Geum river basin given in TMDL (Total Maximum Daily Load) report. During the 1st phase, BOD is chosen as a target water quality constituent under regulation of the Ministry of Environment in Korea. BOD, TN, and TP loads estimated based on the TMDL and provincial zones were re-distributed for 10 major tributaries, and the remaining areas along the main river are classified as 15 incremental flow areas. Water quality modeling was conducted using Qual2E for the low flow period of a year (i.e. $March{\sim}April$). The results of the model simulation showed that about 30 cms from the Daechung dam would be sufficient to satisfy the target water quality in the Geum river downstream of the Daechung multipurpose Dam.

Improvement of Channel Water Quality Module in SWAT (SWAT 모형의 하도 수질 모듈의 개선)

  • Kim, Nam-Won;Shin, Ah-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.902-909
    • /
    • 2009
  • With various reservoirs, dams and reduction of water velocity in downstream, rivers in Korea often have characteristics of accumulation of pollutants. Therefore, the main focus of water quality modeling in Korea needs to be shifted from DO to algae and organic matter. Moreover the structures of water quality models should be modified to have capability of simulating BOD which is a key factor of total water pollution load management in Korea as laboratory experiment BOD (Bottle $BOD_5$). In the SWAT model which is one of the widely used water quality models in Korea, the channel water quality module is using main algorithm of the QUAL2E model which has limitations in simulating algae, organic matter and Bottle BOD5 etc. To overcome this hindrance, in this study, the improved channel water quality module of the SWAT model (Q-SWAT) was proposed by linking the algorithms of the QUAL-NIER model which was developed based on the QUAL2E model to the SWAT model. The algorithms estimating the increase of internal organic matter by fractionization algal metabolism process and calculating Bottle $BOD_5$ were added and the results of proposed model were compared to those of the original SWAT model. The results of comparison test are showing that more accurate BOD values can be obtained with the Q-SWAT model and it is anticipated that the Q-SWAT model can be used as an effective tool of decision support through the water quality simulation and long term pollution source analysis.