• Title/Summary/Keyword: QSARs

Search Result 44, Processing Time 0.018 seconds

Influence of 3-(N-methyl-N-X(sub.)phenylaminooxoacetyl) group on the herbicidal activity of Imazethapyr derivatives (Imazethapyr 유도체의 제초활성에 미치는 3-(N-methyl-N-(X)-치환-phenylaminooxoacetyl) group의 영향)

  • Sung, N.D.;Kim, H.J.;Chang, H.S.;Kim, D.W.
    • Applied Biological Chemistry
    • /
    • v.36 no.5
    • /
    • pp.381-386
    • /
    • 1993
  • New twenty five Imazethapyr derivatives, [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin -2-yl)-3-(N-methyl-N-X(sub.)-phenylaminooxoacetyl)-5-methylpyridine] were synthesized. and The quantitative structure activity relationships (QSARs) between their post-emergence herbicidal activity$(pI_{50})$ values in vivo against Barnyard grass (Echinochloa crus-galli) and physicochemical parameters of substituents(X) of 3-(N-methyl-N-X(sub.)-phenylaminooxoacetyl) group have been studied. From the basis on the findings, in case of post-emergence, the activities were dependent on the steric constant$(E_s<0)$ and electron donating $(\sigma<0)$ effect by subsitituents(X) of 3-(N-methyl-N-X(sub.)phenylaminooxoacetyl) group. Therefore, The most effective compound,15 (4-t-butyl group) and 20 (3,5-dimethyl group) were examined in this study. And the conditions on the compounds predicted to show higher herbicidal activity were also discussed.

  • PDF

Influence of 3-(N-methyl-N-X(Sub.)Phenylaminooxoacetyl) Group on the Herbicidal Activity of Imazapyr Derivatives (Imazapyr 유도체의 제초활성에 미치는 3-(N-methyl-N(X)-치환-Phenylaminooxoacetyl) Group의 영향)

  • Sung, N.D.;Ryu, T.S.;Chang, H.S.;Kim, D.W.
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.516-521
    • /
    • 1994
  • New seventeen imazapyr derivatives, 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-3-(N-methyl-N-X(sub.)-phenylaminooxoacetyl)pyridine, 6 were synthesized and their pre-emergence herbicidal activity$(pI_{50})$ in vivo against Corn (Zea mays L.) and Pigweed (Amaranthus viridis L.) were studied by the pot test under paddly conditions. Quantitative structure activity relationships (QSARs) were analyzed using the physicochemical parameters of substituent(X) on the phenyl ring of 3-(N-methyl-N-X(sub.)-phenylaminooxoacetyl) group and regression analysis. The herbicidal activities were related to the steric effect of X-substituent. The effect was rationalized by paraholic function of MR and $L_1$, where the optimal values were MR=5.56 (Zea mays L.) and $L_1=3.34\;{{\AA}}$ (Amaranthus viridis L.). Among them, 2,5-difluoro substituted compound, 6i showed good herbicidal activity against Pigweed with excellent tolerance to Corn.

  • PDF

3D-QSAR on the Herbicidal Activities of New 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide Derivatives (새로운 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide 유도체들의 제초활성에 관한 3차원적인 정량적 구조와 활성과의 관계)

  • Sung, Nack-Do;Jung, Hoon-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.252-257
    • /
    • 2005
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) for the herbicidal activities against pre-emergence barnyard grass (Echinochloa crus-galli) by new 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropion amide derivatives were studied quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodologies. The best CoMFA model (AI-2) and CoMSIA model (AII-4) were derived from an atom based fit alignment and a combination of CoMFA fields. The herbicidal activities from CoMFA and CoMSIA contour maps showed that the activity will be able to be increased according to the substituents variation on the N-phenyl ring.

Herbicidal Activities of Phenylvinylsulfone Derivatives (Phenylvinylsulfone 유도체의 제초활성)

  • Yu, Seong-Jae;Jeon, Dong-Ju;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.90-94
    • /
    • 1995
  • Post emergence herbicidal activities$(pI_{50})$ of X-substituted phenylvinylsulfone derivatives(S) in-vivo against rice(Oryza sativa L.), Barnyard grass(Echinochloa crus-galli) and Pickerelweed(Monochoria vaginalis Presl) were measured by the pot test under paddy conditions. The (S) showed herbicidal symptom rapidly with lower activity(average $pI_{50}=2.0$) as proherbicide, which was excellent tolerance to rice. The structure activity relationships(SAR) were analyzed using such a physicochemical parameters as hydrophobic$({\pi})$ and molecular orbital(MO) quantity by the multiple regression technique, and discussed with quantum pharmacology. The herbicidal activities were related to the hydrophobic$({\pi})$ effect of X-substituent and orbital(HOMO & LUMO) energy. In case of Pickerelweed, the effect was rationalized by parabolic function of ${\pi}$ constant, where the optimal value of ${\pi}$ was 1.10. An increase in hydrophobicity and negative orbital energy by the electron attracting X-substituent may contribute to the herbicidal activity. Based on results proposed from SAR analysis, the mode of herbicidal action could be assumed.

  • PDF

Molecular Orbital Theory on Cellulolytic Reactivity Between pNP-Cellooligosccharides and ${\beta}$-Glucosidase from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Nam, Yun-Kyu;Choi, Woo-Young;Sung, Nack-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1789-1796
    • /
    • 2007
  • A ${\beta}$-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters ($K_m$ and $V_{max}$) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified ${\beta}$-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion ($H_3O^+$), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion ($SH^+$) protonated to the S molecule and the HOMO energy of the $H_2O_2$ molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via $SN_1$ and $SN_2$ reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that $K_m$ has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

CoMFA and CoMSIA Analysis on the Selective Fungicidal Activity of N-phenyl-D-phenylthionocarbamate Analogues against Resistant and Sensitive Gray Mold (Botrytis cinerea) (저항성 및 감수성 잿빛곰팡이병균(Botrytis cinerea)에 대한 N-Phenyl-O-phenylthionocarbamate 유도체들의 선택적인 살균활성에 관한 CoMFA 및 CoMSIA 분석)

  • Soung, Min-Gyu;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.138-143
    • /
    • 2007
  • The relationships between three dimensional quantitative structure and activity relationships (3D-QSARs) for the selective fungicidal function between N-phenyl substituents of N-phenyl-O-phenyl-thionocarbamate derivatives analogues and their the fungicidal activities against resistant (RBC) and sensitive (SBC) gray mold (Botrytis cinerea) were studied quantitatively using CoMFA and CoMSIA methods. The statistical values of optimized CoMSIA (M7) model were better ($r^2$ & $q^2=CoMSIA{\gg}CoMFA$) than that of CoMFA (M5) model. And the factor influencing of the selective between the fungicidal activity against RBC and SBC was dependent on electrostatic field of CoMFA (M5) model. Therefore, it is predicted that, from the CoMSIA contour maps of CoMSIA (M7) model, the selectivity will be improved by the H-bond donor that is with negatively charged favored group at meta-position on the N-phenyl ring.

3D-QSAR Analysis on the Fungicidal Activity with N-Phenylbenzenesulfonamide Analogues against Phytophthora blight (Phytophthora capsici) and Prediction of Higher Active Compounds (고추역병균(Phytophthora capsici)에 대한 N-Phenylbenzenesulfonamide 유도체들의 살균활성에 관한 3D-QSAR 분석과 고활성 화합물의 예측)

  • Soung, Min-Gyu;Kang, Kyu-Young;Cho, Yun-Gi;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.192-197
    • /
    • 2007
  • 3D-QSARs on the fungicidal activity of N-phenylbenzenesulfonamide and N-phenyl-2-thienylsulfonamide analogues (1-37) against Phytophthora blight (Phytophthora capsici) were studied quantitatively using CoMFA and CoMSIA methods. The statistical results of the optimized CoMFA (2) model ($r^2_{cv.}(q^2)$ = 0.692 & $r^2_{ncv.}$= 0.965) show better predictability and fitness than CoMSIA (2) model ($r^2_{cv.}(q^2)$ = 0.796 & $r^2_{ncv.}$= 0.958). The fungicidal activities according to the information of the optimized CoMFA (2) model were dependent upon the steric and electrostatic fields of the molecules. Therefore, from the contribution contour maps of CoMFA (2) model, it is expected that 63% contribution was caused by the steric bulk of meta-substituent ($R_1$) on the S-phenyl ring. Also, the other contribution level of 32.9% was represented by the positive charged $R_4-group$ ($R_1$) on the N-phenyl ring and para-substituent ($R_1$) on the S-phenyl ring. A series of higher active compounds, $R_1$= 3-decyl substituent ($pred.pI_50$= 5.88) etc. were predicted based on the findings.

Synthesis and quantative structure-activity relationships on the antifungal activity of 3-phenylisoxazol and 3-phenyl-2,5-dihydro-5-isoxazolone derivatives (3-phenylisoxazole 및 3-phenyl-2,5-dihydroisoxazol-5-one 유도체의 합성과 살균활성에 관한 구조-활성관계)

  • Sung, Nack-Do;Yu, Seong-Jae;Lee, Hee-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.4
    • /
    • pp.20-26
    • /
    • 2001
  • A series of new 2-benzoyl-3-phenyl-2,5-dihydroisoxazol-5-one, (A) and 3-phenyl-5-phenylcarbonyl-oxyisoxazole, (B) derivatives as substrates were synthesized and their quantitative structure-activity relationships (QSAR) analyses between the antifungal activities ($pI_{50}$) and physicochemical parameters of substituents onl the benzoyl group against resistant (RPC:95CC7303) and sensitive (SPC:95CC7105) Phytophthora blight (Phytophthora capsici,) were studied. The synthetic yield (%) and antifungal activities of (A) were higher than (B) and selectivities between the fungi were not showed. From the basis on the Hansch-Fujita analyses, the optimum width values ($(B_2)_{opt.}=ca.\;4.00{\AA}$) of the substituents on the benzoyl group were important factor in determining fungicidal activity against the two fungi. Influence of the substituents as electron withdrawing group on the fungicidal activity against RPC, but not for SPC. And tile bromo- and acetyl-substituents were contributed to higher antifungal activity against RPC and SPC from the results of Free-Wilson analyses.

  • PDF

Quantitative structure-activity relationships for the growth inhibition activity of the herbicidal 3-phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives (제초성 3-Phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole 유도체들의 정량적인 구조와 생장 저해 활성과의 관계)

  • Sung, Nack-Do;Lee, Sang-Ho;Kim, Hyoung-Rae;Song, Jong-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.279-286
    • /
    • 2002
  • To improve the growth inhibition activities and selectivities for quinclorac family, novel 3-substituted phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives as the substrate were synthesized and their the activities ($pI_{50}$) against shoot and root of rice plant (Oryza sativa L.) and barn-yard grass (Echinochloa crus-galli) were measured. And the quantitative structure-activity relationships (QSARs) between physicochemical parameters of the substitutents (R) on phenyl group and the activities ($pI_{50}$) were analyzed quantitatively. According to the SAR analyses, the substrates of planar conformation showed higher herbicidal activities against barnyard grass than rice plant. The activities against rice plant depend on the electronic effect (shoots: ${\sigma}_{opt.}=0.49$ & root: $R_{opt.}=-0.15$) of substituents, whereas the activities against shoots and roots of barnyard grass depend on hydrophobicity (${\pi}_{opt.}=0.37{\sim}2.40$). There were conditions of selective growth inhibition activity against barnyard grass when such a ortho-substituted electron donating substituents showing the hydrophobicity value, ${\pi}=2.40$ were introduced on the phenyl ring. The 2-tolyl substituent predicted from SAR equations was expected to have better growth inhibition activity and selectivity (${\Delta}pI_{50}=1.26$) for barnyard grass.

Comparative Molecular Similarity Indices Analyses (CoMSIA) on the Herbiridal Activities of New 5-benzofuryl-2-[1-(alkoxy-imino)alkyl]-3-hydroxycyclo-hex-2-en-1-one Derivatives (새로운 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclo-hex-2-en-1-one 유도체들의 제초활성에 관한 비교분자 유사성지수 분석)

  • Sung, Nack-Do;Jung, Ki-Sung;Jung, Hoon-Sung;Chung, Young-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) on the herbicidal activities against in-vitro pre-emergence rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) by new 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives were studied quantitatively using comparative molecular similarity indices analysis (CoMSIA) methodology. The optimized CoMSIA model(A5: $r^2_{cv.}=0.569$ & $r^2_{ncv.}=0.941$) for rice plant exhibited a good correlation with steric (31.6%) and hydrophobic (39.7%) factors of the substrate molecules, and the model (B4: $r^2_{cv.}=0.569$ & $r^2_{ncv.}=0.941$) for barnyardgrass exhibited a good correlation with electrostatic (46.7%) and H-bond acceptor field (30.8%), respectively. The predicted $R_1=SF_5,\;R_2=R_3=R_4=H(P1)$ substituent (Rice plant: $pI_{50}=4.84$ & Barnyardgrass: $pI_{50}=7.21$, ${\Delta}pI_{50}=2.37$) by the model (B4) not only exhibited to the highest herbicidal activity against barnyardgrass, but also exhibited to the highest selecticity between two plants.