• Title/Summary/Keyword: QSAR.

Search Result 265, Processing Time 0.03 seconds

Determination of Biodegradation Rate on Dichlorvos and Methidathion (Dichlorvos와 methidathion의 생분해율의 측정)

  • Min, Kyung-Jin;Cha, Chun-Geun
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • The present study was performed to investigate biodegradation rate of dichlorvos and methidathion. In the biodegradation test of two pesticides by the modified river die-away method from June 17 to August 22, 1998, the biodegradation rate constants and half-life were determined in Nakdong(A) and Kumho River(B). Biodegradation rate of dichlorvos was 4.51% in A sampling point, 6.88% in B sampling point after 7 days. Biodegradation rate constants and half-life of dichlorvos were 0.0066 and 105 days in A sampling point, 0.0102 and 67.9 days in B sampling point, respectively. Biodegradation rate of methidathion was 23% in A sampling point, 36% in B sampling point after 7 days. Biodegradation rate constants and half-life of methidathion were 0.0377 and 18.4 days in A sampling point, 0.0641 and 10.8 days in B sampling point, respectively. Biodegradation rate of methidathion was faster than that of dichlorvos. This suggested that the difference in biodegradation of pesticides was due to difference in the water quality and standard plate counts in the Nackdong and Kumho Rivers. The result of correlation analysis between biodegradation rate constants of the pesticides and water quality(DO, BOD, SS, ABS, NH$_3$-N, and NO$_3$-N) showed significant correlation with BOD, SS and NH$_3$-N at the 5% significant level. A significant linear equation was obtained from regression analysis at the 5% significant level, whereas, dependent variables were BOD, SS and NH$_3$-N, and the biodegradation rate constant was independent variable. It is suggested that dichlorvos will be mainly degraded by hydrolysis, and for methidathion was both hydrolysis and biodegradation. A significant QSAR equation was obtained from regression analysis at the 10% significant level, whereas, dependent variable is biodegradation rate constants of BPMC, chlorothalonil, dichlorvos and methidathion, vapor pressures, partition coefficients and water solubilities of the pesticides are independent variables. Also, a significant linear equation was obtained from regression analysis at the 1% significant level, whereas, dependent variable is biodegradation rate constants of BPMC, chlorothalonil, dichlorvos and methidathion, hydrolysis rate constants of the pesticides are independent variables. It is suggested that the pesticides will be degraded by main degradation factor when the pesticides was affected both hydrolysis and biodegradation.

  • PDF

The Influence of the Substituents on the Benzo Ring for Antioxidant Activity of 4-Methyl-2H-benzopyran-2-one Analogues (4-Methyl-2H-benzopyran-2-one 유도체들의 항산화 활성에 관한 Benzo 고리상 치환기들의 영향)

  • Choi, Won-Seok;Lee, Jae-Whang;Cho, Yun-Gi;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.99-104
    • /
    • 2010
  • The influences on antioxidant activities of the substituents ($R_1-R_4$) on benzo ring in 4-Methyl-2H-benzopyran-2-one analogues (1-23) were discussed quantitatively using three dimensional quantitative structure-activity relationships (3D-QSARs: Comparative molecular field analyses (CoMFA) and Comparative molecular similarity indice analyses (CoMSIA)) methods. The statistical qualities of CoMSIA models were better than those of CoMFA models and the CoMSIA 2 model was optimized model ($q^2$=0.700 & $r^2$=0.979). Also, the contribution ratios (%) of the optimized CoMSIA 2 model were H-bond donor field 43.5%, electrostatic field 41.8% and steric field 14.7% so that the antioxidant activity exhibited a strong correlation with H-bond donor and electrostatic factor of molecules. From the analytical results of the CoMSIA contour maps, if the positive charge favor group and H-bond donor disfavor group were placed in the $R_1-R_4$ positions on the benzo ring, it was predicted that the groups would raised the antioxidant activity.

Comparative Molecular Field Analyses (CoMFA) Models and Their Selectivity for the Herbicidal Activities of New Novel 2-(4-chloro-5-(2-chloroallyloxy)-2-fluorophenyl)-3-thioalkoxy-2,3,4,5,6,7-hexahydroisoindol-1-one Derivatives (새로운 2-(4-chloro-5-(2-chloroallyloxy)-2-fluorophenyl)-3-thioalkoxy-2,3,4,5,6,7-hexahydroisoindol-1-one 유도체들의 제초활성에 관한 비교 분자장 분석 모델과 선택성)

  • Sung, Nack-Do;Song, Jong-Hwan;Kang, Eun-Kyu;Jung, Hoon-Sung
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.394-399
    • /
    • 2005
  • The comparative molecular field analyses (CoMFA) models for the herbicidal activities against barnyardgrass (Echinochloa crus-galli) and rice plant (Orysa sativa L.) by the substituent (R) on the hexahydroisoindol-1-one ring in a series of new 2-(4-chloro-5-(2-chloroallyloxy)-2-fluorophenyl)-3-thioalkoxy-2,3,4,5,6,7-hexahydroisoindol-1-one derivatives were conducted and discussed for selectivity between both plants. The statistical results of the two best models (B2 & R7) showed the best predictability for the herbicidal activities based on the cross-validated value $q_2(r^2cv.=0.529{\sim}0.755)$ and none cross-validated value $({r^2}_{ncv.}=0.937{\sim}0.945)$, respectively. Based on the findings, the predictability and fitness of the model (B2) for barnyard grass was better than that of the model (R7) for rice plant. From the two models and contour maps, it is revealed that the novel selective character for herbicidal activity between the two plants depend on the electrostatic field and steric field for the substituent of ortho-positions on the S-phenyl group as R-substituent in hexahydroisoindol-1-one ring.

Influence of N-alkoxy groups on the activity of photodynamic herbicidal 6-Benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives (광역동 6-Benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one 유도체의 제초활성에 미치는 N-alkoxy기의 영향)

  • Sung, Nack-Do;Song, Jong-Hwan;Kim, Hyung-Rae
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.58-63
    • /
    • 2002
  • New photodynamic herbicidal 2,3-dihydro-2,2,4,5,6-pentamethylbenzofuran-5-yl, (I) and 2,3-dihydro-2-ethyl-2,4,5,6-tetramethylbenzofuran-5-yl, (II) substituents in 6-benzofury-2-[1-( alkoxyimino )alkyl]-3 hydroxycyclohex-2-en-1-one derivatives were synthesized and their herbicidal activities against rice plant (Oryza sativa L.), barnyard grass (Echinochloa crus-galli) and pickerel weed (Monochoria vaginalis presl.) were measured under submerged pre and post-emergence conditions. Particularly, a series of (I) compounds showed good selective herbicidal activities between the 3 leaf stage of rice plant and barnyard grass at rates of $0.25{\sim}0.0007kg/ha$. The structure activity relationships (SAR) on the herbicidal activity with changing N-alkoxy groups were discussed quantitatively. According to the SAR results, it was expected that the selectivity factor between seed of rice plant and barnyard grass should be rely on the N-alkoxy groups with bigger dipole moment and bigger (or smaller) $B_3$ constant than optimal value $(B_3)_{opt.}=4.41{\AA}$. Compared with (I), the (II) substituents showed more superior herbicidal activities.

Comparative molecular field analyses (CoMFA) on the antifungal activity against phytophthora blight fungus of 3-phenylisoxazole and 3-phenyl-2,5-dihydroisoxazol-5-one derivatives (고추 역병균에 대한 3-phenylisoxazole과 3-phenyl-2,5-dihydroisoxazol-5-one 유도체들의 살균 활성에 관한 비교 분자장 분석 (CoMFA))

  • Sung, Nack-Do;Lee, Hee-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.72-79
    • /
    • 2002
  • 3D-QSAR between fungicidal activitives ($pI_{50}$) against metalaxyl-sensitive (SPC: 95CC7105) or metalaxyl-resisitant (RPC: 95CC7303) isolate of phytophthora blight fungus (Phytophthora capsici), and a set of 3-phenylisoxazole (A) and 3-phenyl-2,5-dihydroisoxazole (B) derivatives as substrates were conducted using comparative molecular field analyses (CoMFA). The antifungal activities of (A) were generally higher than those of (B). And it is assumed that the most stable conformation of the active substrate was approximately planar from conformational search. The CoMFA models proved a good predictive ability and suggested that the electronic field of substrates were higher than hydropohobic field and steric field requirements for recognition forces of the receptor site. And the factors were strongly correlated (cross-validated $q^2>0.570$ & conventional $r^2>0.968$) with the fungicidal activitives. According to the CoMFA analyses, the selectivity factors for RPC suggested that the sterically bulky groups (C14 & C15) and electron withdrawing groups (C15 & C16) have to be introduced to the ortho, meta and para-position on the benzoyl moiety of substrates.

Structure-activity relationships on the herbicidal activity of the arylthio substituents in N-(2-fluoro-4-chloro-5-alkyloxyphenyl)-3,4-dimethyl-2-arylthio-5-oxo-2,5-dihydropyrrole derivatives (N-(2-Fluoro-4-chloro-5-alkyloxyphenyl)-3,4-dimethyl-2-arylthio-5-oxo-2,5-dihydropyrrole 유도체 중 arylthio- 치환체들의 제초활성에 관한 구조-활성관계)

  • Sung, Nack-Do;Lim, Chi-Whan;Yun, Ki-Seob;Song, Chong-Whan;Kim, Hung-Rae
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.32-36
    • /
    • 2000
  • A series of synthesized N-(2-fluoro-4-chloro-5-alkyloxyphenyl)-3,4-dimethyl-2-arylthio-5-oxo-2,5-dihydropyrrole derivatives as substrates were found to selectivity significantly with both rice plant (Oryza sativa L.) and weeds, barnyard grass (Echinochloa crus-galli) and bulrush (Scriptus juncoides) for those herbicidal activities at a rate of 0.1 kg/ha with post emergence under submerged conditions. The structure activity relationships (SARs) on herbicidal activity of $SR_{2}$=2-arylthio substituents on the pyrrole ring were analysized. From the results, the relative contribute orders of the $SR_{2}$ with phenyl group on the activity are meta > para > ortho-substituents. Among these compounds, the $R_{1}=propargyl$ (IA) subsrituents, $1{\sim}12$ showed higher activity than the $R_{1}$=2-chloro-2-propenyl (IB) substituents, $13{\sim}16$. The $SR_{2}$ groups of IA substituents shown that the optimal steric constant, $(Es)_{opt.}=3.25$ and m-phenylthio substituents were found to be -contribute the activity against barnyard grass. But the herbicidal activity of IB substituents against bulrush would depend upon the molar refractivity, $M_{R}$ constant of $SR_{2}$ group.

  • PDF

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

N-phenyl Substitutent Effect on the Herbicidal Activity of 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide Derivatives against Rice Plant with Pre- and Post-emergence (발아 전 후 벼의 약해에 미치는 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpropionamide 유도체들 중 N-phenyl치환기의 효과)

  • Lee, Sang-Ho;Ryu, Jae-Wook;Woo, Jae-Chun;Koo, Dong-Whan;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.52-56
    • /
    • 2000
  • The influence of the 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenyl- propionamide derivatives on the herbicide activities against rice plant with pre-emergence and post-emergence in down land were examined and the structure activity relationship (SAR) were analyzed by Free-Wilson and Hansch method. In pre-emergence, the SAR approach is shown that the optimal, $({\pi})_{opt}=0.91$, hydrophobicity with electron donating effect of the ortho substituted mono substituents and 2,3,4-substituted three substituents were found to be contribute the herbicidal activity. Whereas, in post-emergence, the optimal, ({\pi})_{opt}=0.50$, hydrophobicity with electron withdrawing effect of meta substituted mono subsituents and 2,3-substituted two substituents were found to be contribute the herbicide activity. The herbicide activities with post-emergence more increase than that of pre-emergence. It is assumed from the SAR equations that the 2-methyl-3-methoxy-4-cyano group substituent is selected as the most lowest herbicide activity against rice plant with post-emergence in green house. The hydrolysis reaction was proceeded through nucleophilic addition-elimination (Ad_{Nu-E})$ with the orbital control between LUMO of substrate and HOMO of water molecule. And molecular electrostatic potential (MEP) of none (H) substituent was discussed.

  • PDF

The Cytotoxicity of 1,3-diphenylpropenone derivatives (1,3-diphenylpropenone 유도체의 세포독성)

  • Yu, Seong-Jae;Kwon, Byung-Mok;Lee, Chong-Ock;Choi, Sang-Un;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.68-72
    • /
    • 1999
  • The cytotoxicity of 1,3-diphenylpropenone derivatives known to inhibit the farnesyl protein transferase (FPTase) was examined against various established tumor cell line, A549 (lung cancer), SKMEL-2 (uterine cancer), HCT-15 (skin cancer), SKOV-3 (brain cancer) and XF-498 (colon cancer) of the 1,3-diphenylpropenone derivatives showing farnesyl protein transferase (FPTase) inhibition activity. And the structure-activity relationship (SAR) between structure of 1,3-diphenylpropenone derivatives as substrate and cytotoxicity was investigated by Free-Wilson analysis as well as Hansch method with tumor cell lines. From the result of Free-Wilson analyses, X-substituents on the benzoyl group have a more important role than Y-substituents on the styryl group. The 2,4-dichloro substituent, 15 and 2,4-dimethyl substituent, 16 showed the highest cytotoxicity (average pI_(50)=5.0). Particulary, the cytotoxicity of X-substituents increased with electronic effect $({\sigma})$ due to weak electron withdrawing group with optimum value $({\sigma}_{opt}=0.22{\sim}0.29})$ whereas that of Y-substituent resulted from various factors such as logP, $B_1$ and R constant.

  • PDF

Structure-activity relationships on the herbicidal activity of the 2,3-dihydro-2-ethyl-2,4,6,7-tetramethylbenzofuran-5-yl substituents in 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives (5-Benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one 유도체 중 2,3-dihydro-2-ethyl-2,4,6,7-tetramethylbenzofuran-5-yl 치환체들의 제초활성에 관한 구조-활성관계)

  • Sung, Nack-Do;Song, Jong-Hwan;Kim, Kyoung-Mahn
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.34-39
    • /
    • 2000
  • A new fifteen 2,3-dihydro-2-ethyl-2,4,6,7-tetramethylbenzofuran-5-yl substituents in 5-benzofuryl-2-[1-(alkoxyimino)alkyl]-3-hydroxycyclohex-2-en-1-one derivatives as substrate were synthesized and their herbicidal activities against rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) with post emergence were measured under submerged conditions. The $R_{1}$=methyl substituents, $1{\sim}8$ showed the higher herbicidal activity to the rice plant and barnyard grass. The structure-activity relationships (SARs) on tile herbicidal activity of $R_{1}$ and $OR_{2}$ groups on the azomethine bond in substrates were analysized. From tile results of dicussed SAR, the herbicide activities against rice plant would depend largely on the steric factor, Whereas, in case of barnyard grass, the activities were governed by the hydrophobicity factor. The conditions of selective herbicide activity between the two plant species are assumed that the substrates should nave optimal hydrophobicity ( $(logP)_{opt.}=6.0$), a $R_{1}$ groups of small and a long $OR_{2}$ groups.

  • PDF