3D-QSAR model that correlates the biological activities with the chemical structures of quipazine derivatives acting on the serotonine transporter (SERT) was developed by comparative molecular field analysis (CoMFA). Total 8 models were constructed and a more accurate model, using close 1 $\AA$ grid spacing and StDev*Coefficients weight value gave better results. The contour maps with the best model, the resulting cross-validated correlation ($q^2$ : 0.744), and non-cross-validated correlation ($r^2$ : 0.966) indicate the steric and electrostatic environment of inhibitors in the SERT binding pocket. This study can be used as a putative picture of the pharmacophore in the design of novel and potent inhibitors.
MX and its analogs are synthesized and modeled by quantitative structure activity relationship (QSAR) study including comparative molecular field analysis (CoMFA). As a result, factors affecting this class of compounds have been found to be steric and electrostatic effects. Because hologram quantitative structure activity relationship (HQSAR) technique is based on the 2-dimensional descriptors, this is free of ambiguity of conformational selection and molecular alignment. In this study we tried to include all the data available from the literature, and modeled with the HQSAR technique. Among the parameters affecting fragmentation, connectivity was the most important one for the whole compounds, giving good statistics. Considering additional parameters such as bond specification only slightly improved the model. Therefore connectivity has been found to be the most appropriate to explain the mutagenicity for this class of compounds.
The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-activity relationship (QSAR) context on a data set consisting of the binding affinities of 39 imidazobenzodiazepines for the α1 benzodiazepine receptor. The 3-D structures of these compounds were optimized using HyperChem software with semiempirical AM1 optimization method. After optimization a set of 1481 zero-to three-dimentional descriptors was calculated for each molecule in the data set. The response (dependent variable) in the tree model consisted of the binding affinities of drugs. Three descriptors (two topological and one 3D-Morse descriptors) were applied in the final tree structure to describe the binding affinities. The mean relative error percent for the data set is 3.20%, compared with a previous model with mean relative error percent of 6.63%. To evaluate the predictive power of CART cross validation method was also performed.
B13 analogues are being considered as therapeutic agents for cancer cells, since B13 is a ceramide analogue and inhibits ceramidase to promote apoptosis in cancer cells. B13 sulfonamides are assumed to have biological activity similar to B13, since they are made by bioisosterically substituting the carboxyl moiety of B13 with sulfone group. Twenty B13 sulfonamides were evaluated for their in vitro cytotoxicities against human colon cancer HT-29 and lung cancer A549 cell lines using MTT assays. Replacement of the amide group with a sulfonamide group increased cytotoxicity in both cancer cell lines. The sulfonamides with long alkyl chains exhibited activities two to three times more potent than that of B13 and compound (15) had the most potent activity with $IC_{50}$ values of 27 and $28.7{\mu}M$ for HT-29 and A549, respectively. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to carry out QSAR molecular modeling of these compounds. The predictive CoMSIA models for HT-29 and A549 gave cross-validated q2 values of 0.703 and 0.830, respectively. From graphical analysis of these models, we suppose that the stereochemistry of 1,3-propandiol is not important for activity and that introduction of a sulfonamide group and long alkyl chains into B13 can increase cytotoxicity.
The 3D-QSAR study of 2-arylbenzoxazoles as novel cholesteryl ester transfer protein inhibitors was performed by comparative molecular field analysis (CoMFA), CoMFA region focusing (CoMFA-RF) for optimizing the region for the final PLS analysis, and comparative molecular similarity indices analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The best orientation was searched by all-orientation search strategy using AOS, to minimize the effect of the initial orientation of the structures. The predictive ability of CoMFARF and CoMSIA were determined using a test set of twelve compounds giving predictive correlation coefficients of 0.886, and 0.754 respectively indicating good predictive power. Further, the robustness and sensitivity to chance correlation of the models were verified by bootstrapping and progressive scrambling analyses respectively. Based upon the information derived from CoMFA(RF) and CoMSIA, identified some key features that may be used to design new inhibitors for cholesteryl ester transfer protein.
${\beta}$-Secretase (beta-amyloid converting enzyme 1 [BACE1]) is involved in the first and rate-limiting step of ${\beta}$-amyloid ($A{\beta}$) peptides production, which leads to the pathogenesis of Alzheimer's disease(AD). Therefore, inhibition of BACE1 activity has become an efficient approach for the treatment of AD. Ligand-based and docking-based 3D-quantitative structure-activity relationship (3D-QSAR) studies of acyl guanidine analogues were performed with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to obtain insights for designing novel potent BACE1 inhibitors. We obtained highly reliable and predictive CoMSIA models with a cross-validated $q^2$ value of 0.725 and a predictive coefficient $r{^2}_{pred}$ value of 0.956. CoMSIA contour maps showed the structural requirements for potent activity. 3D-QSAR analysis suggested that an acyl guanidine and an amide group in the $R_6$ substituent would be important moieties for potent activity. Moreover, the introduction of small hydrophobic groups in the phenyl ring and hydrogen bond donor groups in 3,5-dichlorophenyl ring could increase biological activity.
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.249-255
/
2005
Angiotensin-converting enzyme (ACE) is primarily responsible for human hypertension. Current ACE drugs show serious cough and angiodema health problems due to the un-specific activity of the drug to ACE protein. The availability of ACE crystal structure (1UZF) provided the plausible biological orientation of inhibitors to ACE active site (C-domain). Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecula. field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of 28 ACE inhibitors. Alignment for CoMFA obtained by docking ligands to 1UZF protein using FlexX program showed better statistical model as compared to superposition of corresponding atoms. The statistical parameters indicate reasonable models for both CoMFA (q$^2$ = 0.530, r$^2$ = 0.998) and CoMSIA (q$^2$= 0.518, r$^2$ = 0.990). The 3D-QSAR analyses provide valuable information for the design of ACE inhibitors with potent activity towards C-domain of ACE. The group substitutions involving the phenyl ring and carbon chain at the propionyl and sulfonyl moieties of captopril are essential for specific activity to ACE.
Antagonists of the d -opioid receptor are effective in overcoming resistance against analgesic drugs such as morphine. To identify novel antagonists of the d -opioid receptor that display high potency and low resistance, we performed 3D-QSAR analysis using chemical feature-based pharmacophore models. Chemical features for d -opioid receptor antagonists were generated using quantitative (Catalyst/HypoGen) and qualitative (Catalyst/HipHop) approaches. For HypoGen analysis, we collected 16 peptide and 16 non-peptide antagonists as the training set. The best-fit pharmacophore hypotheses of the two antagonist models comprised identical features, including a hydrophobic aromatic (HAR), a hydrophobic (HY), and a positive ionizable (PI) function. The training set of the HipHop model was constructed with three launched opioid drugs. The best hypothesis from HipHop included four features: an HAR, an HY, a hydrogen bond donor (HBD), and a PI function. Based on these results, we confirm that HY, HAR and PI features are essential for effective antagonism of the d -opioid receptor, and determine the appropriate pharmacophore to design such antagonists.
Effects of some diacid, diamine and dinitro aromatic compounds on the structure and activity of adenosine deaminase (ADA) were investigated by UV-Vis spectrophotometry in 50 mM phosphate buffer at pH = 7.5 and 27 ${^{\circ}C}$ and molecular docking studies. The results showed that all tested ligands are showing inhibition; five ligands are uncompetitive and other two ligands are mixed of competitive and noncompetetive inhibitors with majority of competitive behavior. For the later case analysis was done based on competitive inhibition. Diacids have larger size and higher inhibition constant ($K_I$) relative to others. A logical correlation between calculated free energy of binding and experimental values was obtained for un-competitive. Experimental and calculated data showed that competitive inhibitors are distributed near the active site of enzyme and form several cluster of ranks, whereas uncompetitive inhibitors bind to the enzyme-substrate complex and distributed far from the active site. Results of structure-activity relationship showed that, larger, more hydrophobe, less spherical and more aromatic ligands have higher inhibition constants.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 60 PPAR-g agonists. Partial Least Squars (PLS) analysis produced good predicted models with $q^2$ value of 0.62 (SDEP=0.33, F value=93.22, $r^2$=0.92) and 0.56 (SDEP=0.47 F value=27.65, $r^2$=0.86), respectivly. The key spatial properties were detected by careful analysis of the isocontour maps.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.