The most important wave set in ECG is the QRS complex. Automatic classification of the QRS complex is very useful in the diagnosis of cardiac dysfunction. Also, diagnosis is influenced by selection of dominant beat. In this paper, we propose simple algorithm for QRS detection. And we determine correlation between significan attributes of QRS complexs. We evaluated the efficiency of proposed method with the CSE database.
Journal of the Korean Institute of Telematics and Electronics S
/
v.35S
no.5
/
pp.48-58
/
1998
In this paper, we proposed a new algorithm using characteristics of th ereconstructed phase trajectory by topological mapping developed for a real-tiem detection of the QRS complexes of ECG signals. Using fill-factor algorithm and mutual information algorithm which are in genral used to find out the chaotic characteristics of sampled signals, we inferred the proper mapping parameter, time delay, in ECG signals and investigated QRS detection rates with varying time delay in QRS complex detection. And we compared experimental time dealy with the theoretical one. As a result, it shows that the experimental time dealy which is proper in topological mapping from ECG signals is 20ms and theoretical time delays of fill-factor algorithm and mutual information algorithm are 20.+-.0.76ms and 28.+-.3.51ms, respectively. From these results, we could easily infer that the fill-factor algorithm in topological mapping from one-dimensional sampled ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper time delay. Also with the proposed algorithm which is very simple and robust to low-frequency noise as like baseline wandering, we could detect QRS complex in real-time by simplifying preprocessing stages. For the evaluation, we implemented the proposed algorithm in C-language and applied the MIT/BIH arrhythmia database of 48 patients. The proposed algorithm provides a good performance, a 99.58% detection rate.
Journal of information and communication convergence engineering
/
v.5
no.2
/
pp.98-103
/
2007
Long term Electrocardiogram (ECG) [1] analysis plays a key role in heart disease analysis. A combined detection of QRS-complex and P-wave in ECG signal for ubiquitous healthcare system was designed and implemented which can be used as an advanced warning device. The ECG features are used to detect life-threating arrhythmias, with an emphasis on the software for analyzing QRS complex and P-wave in wireless ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server will transfer alarm conditions to a doctor's Personal Digital Assistant (PDA). Doctor can diagnose the patients who have survived from cardiac arrhythmia diseases.
본 논문에서는 배경잡음이 섞여 있는 QRS 파의 증대를 위해 신경망에 근거한 적응라인증대기(ALE) 적용을 다루고 있다. Elman과 Jordan RNN 구조의 합성형태를 갖는 수정된 완전연결 리커런트 신경망이 ALE의 비션형 적응필터로 사용되고 있다. 신경망 노드사이의 연결계수와 이득, 기울기, 지연과 같은 노드 활성함수의 변수들이 기울기 강하 알고리즘을 사용하여 학습이 반복될 때마다 갱신된다. 수정된 신경망은 먼저 미지의 선형과 비선형 시스템 identification을 수행함으로써 평가하였다. 그리고 미약한 QRS를 증대시키기 위해서 적당한 크기의 잡음과 매우 심한 잡음이 포함된 실제의 ECG 신호를 비선형 신경망 적응필처를 사용하는 ALE에 입력하였다. 수정된 신경망은 시스템 identification에 사용하기가 적합함을 확인하였으며, 시뮬레이션 결과에 의하면 신경망 ALE는 잡음 ECG 신호로부터 QRS 파를 증대를 잘 수행하였다.
Whether a person is feeling sleepy or reasonably awake is important safety information in many areas, such as humans operating in traffic or in heavy industry. The changes of body signals have been mostly researched by looking at electroencephalogram(EEG) signals but more and more other medical signals are being examined. In our study, an electrocardiogram(ECG) signal is measured at a sampling rate of 100 Hz and used to try to distinguish the possible differences in signal between the two states: awake and drowsy. Practical tests are conducted using a wireless sensor node connected to a wearable ECG sensor, and an ECG signal is transmitted wirelessly to a base station connected to a server PC. Through the QRS complex in the ECG analysis it is possible to obtain much information that is helpful for diagnosing different types of cardiovascular disease. A program is made with MATLAB for digital signal filtering and graphing as well as recognizing the parts of the QRS complex within the signal. Drowsiness detection is performed by evaluating the R peaks, R-R interval, interval between R and S peaks and the duration of the QRS complex..
Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. In this paper, we would like to introduce the signal processing for ECG analysis and the device made for wireless communication of ECG data. In the signal processing, the wavelet transform decomposes the ECG signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the polynomial approximation partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with the database, we can detect and classify the heart disease. The ECG detection device consists of amplifier, filters, A/D converter and RF module. After amplification and filtering, the ECG signal is fed through the A/D converter to be digitalized. The digital ECG data is transmitted to the personal computer through the RF transceiver module and serial port.
Narrow QRS tachycardia is a common clinical condition characterized by a heart rate exceeding 100 beats per minute and a QRS complex duration of less than 120 ms. This article provides an overview of the diagnostic approach to narrow QRS tachycardia, focusing on the differentiation between various supraventricular tachycardias, such as atrioventricular nodal reentrant tachycardia (AVNRT), atrioventricular reentrant tachycardia (AVRT), atrial tachycardia (AT), and sinus tachycardia. The discussion includes an analysis of the presenting symptoms, electrocardiographic (ECG) findings, and the use of vagal maneuvers and pharmacological agents in diagnosis.
Journal of Institute of Control, Robotics and Systems
/
v.8
no.8
/
pp.691-697
/
2002
Myocardial ischemia is a disorder of cardiac function caused by insuficient blood flow to the muscle tissue of the heart. We can diagnose myocardial ischemia by observing the change of ST-segment, but this change is temporary. Our primary purpose is to detect the temporary change of the 57-segment automatically In the signal processing, the wavelet transform decomposes the ECG(electrocardiogram) signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex more easily. Amplitude comparison method is adopted to detect QRS complex. Reducing the effect of noise to the minimum, we grouped ECG by 5 data and compared the amplitude of maximum value. To recognize the ECG .signal pattern, we adopted the polynomial approximation partially and statistical method. The polynomial approximation makes possible to compare some ECG signal with different frequency and sampling period. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. After removing the distorted ECG by calculating the difference between the orignal ECG and the approximated ECG for polynomial, we compared the approximated ECG pattern with the database, and we detected and classified abnormality of ECG.
This paper describes a development of efficient stress ECG signal analysis algorithm. The algorithm consists of wavelet adaptive filter(WAF), QRS detector and ST segment detector. The WAF consists of a wavelet transform and an adaptive filter. The wavelet transform decomposed the ECG signal into seven levels using wavelet function for each high frequency bank and low frequency bank. The adaptive filter used the signal of the seventh lowest frequency band among the wavelet transformed signals as primary input. For detection of QRS complex, we made summed signals that are composed of high frequency bands including frequency component of QRS complex and applied the adaptive threshold method changing the amplitude of threshold according to RR interval. For evaluation of the performance of the WAF, we used two baseline wandering elimination filters including a standard filter and a general adaptive filter. WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of WAF showed a better performance than compared filters in the noise elimination characteristics and signal distortion. For evaluation of results of QRS complex detection, we compared our algorithm with existing algorithms using MIT/BIH database. Our algorithm using summed signals showed the accuracy of 99.67% and the higher performance of QRS detection than existing algorithms. Also, we used European ST-T database and patient data to evaluate measurement of the ST segment and could measure the ST segment adaptively according to change of heart rate.
Kim, Eung-Suk;Lee, Jeong-Whan;Yoon, Ji-Young;Lee, Myoung-Ho
Proceedings of the KOSOMBE Conference
/
v.1995
no.11
/
pp.193-196
/
1995
An algorithm using topological mapping has been developed for a real-time detection of the QRS complexes of ECG signals. As a measurement of QRS complex energy, we used topological mapping from one dimensional sampled ECG signals to two dimensional vectors. These vectors are reconstructed with the sampled ECG signals and the delayed ones. In this method, the detection rates of CRS complex vary with the parameters such as R-R interval average and peak detection threshold coefficient. We use mean, median, and iterative method to determint R-R interval average and peak estimation. We experiment on various value of search back coefficient and peak detection threshold coefficient to find optimal rule.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.