• 제목/요약/키워드: QRS Complex

검색결과 130건 처리시간 0.021초

심전도 자동 진단을 위한 QRS 파형의 분류 (QRS classification for automated ECG diagnosis)

  • 전대근;염호준;윤형로
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.410-413
    • /
    • 1997
  • The most important wave set in ECG is the QRS complex. Automatic classification of the QRS complex is very useful in the diagnosis of cardiac dysfunction. Also, diagnosis is influenced by selection of dominant beat. In this paper, we propose simple algorithm for QRS detection. And we determine correlation between significan attributes of QRS complexs. We evaluated the efficiency of proposed method with the CSE database.

  • PDF

심전도 신호의 위상학적 팹핑을 이용한 실시간 QRS 검출 알고리즘 (A real-time QRS complex detection algorithm using topological mapping in ECG signals)

  • 이정환;정기삼;이병채;이명호
    • 전자공학회논문지S
    • /
    • 제35S권5호
    • /
    • pp.48-58
    • /
    • 1998
  • In this paper, we proposed a new algorithm using characteristics of th ereconstructed phase trajectory by topological mapping developed for a real-tiem detection of the QRS complexes of ECG signals. Using fill-factor algorithm and mutual information algorithm which are in genral used to find out the chaotic characteristics of sampled signals, we inferred the proper mapping parameter, time delay, in ECG signals and investigated QRS detection rates with varying time delay in QRS complex detection. And we compared experimental time dealy with the theoretical one. As a result, it shows that the experimental time dealy which is proper in topological mapping from ECG signals is 20ms and theoretical time delays of fill-factor algorithm and mutual information algorithm are 20.+-.0.76ms and 28.+-.3.51ms, respectively. From these results, we could easily infer that the fill-factor algorithm in topological mapping from one-dimensional sampled ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper time delay. Also with the proposed algorithm which is very simple and robust to low-frequency noise as like baseline wandering, we could detect QRS complex in real-time by simplifying preprocessing stages. For the evaluation, we implemented the proposed algorithm in C-language and applied the MIT/BIH arrhythmia database of 48 patients. The proposed algorithm provides a good performance, a 99.58% detection rate.

  • PDF

A Combined QRS-complex and P-wave Detection in ECG Signal for Ubiquitous Healthcare System

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.98-103
    • /
    • 2007
  • Long term Electrocardiogram (ECG) [1] analysis plays a key role in heart disease analysis. A combined detection of QRS-complex and P-wave in ECG signal for ubiquitous healthcare system was designed and implemented which can be used as an advanced warning device. The ECG features are used to detect life-threating arrhythmias, with an emphasis on the software for analyzing QRS complex and P-wave in wireless ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server will transfer alarm conditions to a doctor's Personal Digital Assistant (PDA). Doctor can diagnose the patients who have survived from cardiac arrhythmia diseases.

신경망 ALE를 사용한 QRS complex의 증대 (Enhancement of QRS Complex using a Neural Network based ALE)

  • 최한고;심은보
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권5호
    • /
    • pp.487-494
    • /
    • 2000
  • 본 논문에서는 배경잡음이 섞여 있는 QRS 파의 증대를 위해 신경망에 근거한 적응라인증대기(ALE) 적용을 다루고 있다. Elman과 Jordan RNN 구조의 합성형태를 갖는 수정된 완전연결 리커런트 신경망이 ALE의 비션형 적응필터로 사용되고 있다. 신경망 노드사이의 연결계수와 이득, 기울기, 지연과 같은 노드 활성함수의 변수들이 기울기 강하 알고리즘을 사용하여 학습이 반복될 때마다 갱신된다. 수정된 신경망은 먼저 미지의 선형과 비선형 시스템 identification을 수행함으로써 평가하였다. 그리고 미약한 QRS를 증대시키기 위해서 적당한 크기의 잡음과 매우 심한 잡음이 포함된 실제의 ECG 신호를 비선형 신경망 적응필처를 사용하는 ALE에 입력하였다. 수정된 신경망은 시스템 identification에 사용하기가 적합함을 확인하였으며, 시뮬레이션 결과에 의하면 신경망 ALE는 잡음 ECG 신호로부터 QRS 파를 증대를 잘 수행하였다.

  • PDF

Real Time Drowsiness Detection by a WSN based Wearable ECG Measurement System

  • Takalokastari, Tiina;Jung, Sang-Joong;Lee, Duk-Dong;Chung, Wan-Young
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.382-387
    • /
    • 2011
  • Whether a person is feeling sleepy or reasonably awake is important safety information in many areas, such as humans operating in traffic or in heavy industry. The changes of body signals have been mostly researched by looking at electroencephalogram(EEG) signals but more and more other medical signals are being examined. In our study, an electrocardiogram(ECG) signal is measured at a sampling rate of 100 Hz and used to try to distinguish the possible differences in signal between the two states: awake and drowsy. Practical tests are conducted using a wireless sensor node connected to a wearable ECG sensor, and an ECG signal is transmitted wirelessly to a base station connected to a server PC. Through the QRS complex in the ECG analysis it is possible to obtain much information that is helpful for diagnosing different types of cardiovascular disease. A program is made with MATLAB for digital signal filtering and graphing as well as recognizing the parts of the QRS complex within the signal. Drowsiness detection is performed by evaluating the R peaks, R-R interval, interval between R and S peaks and the duration of the QRS complex..

다항식 근사를 이용한 심전도 분석 및 원격 모니터링 (Polynomial Approximation Approach to ECG Analysis and Tele-monitoring)

  • 유기호;정구영;정성남;노태수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.42-47
    • /
    • 2001
  • Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. In this paper, we would like to introduce the signal processing for ECG analysis and the device made for wireless communication of ECG data. In the signal processing, the wavelet transform decomposes the ECG signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the polynomial approximation partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with the database, we can detect and classify the heart disease. The ECG detection device consists of amplifier, filters, A/D converter and RF module. After amplification and filtering, the ECG signal is fed through the A/D converter to be digitalized. The digital ECG data is transmitted to the personal computer through the RF transceiver module and serial port.

  • PDF

다항식 근사를 이용한 심전도의 ST-Segment 분석 (ST-Segment Analysis of ECG Using Polynomial Approximation)

  • 정구영;유기호;권대규;이성철
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.691-697
    • /
    • 2002
  • Myocardial ischemia is a disorder of cardiac function caused by insuficient blood flow to the muscle tissue of the heart. We can diagnose myocardial ischemia by observing the change of ST-segment, but this change is temporary. Our primary purpose is to detect the temporary change of the 57-segment automatically In the signal processing, the wavelet transform decomposes the ECG(electrocardiogram) signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex more easily. Amplitude comparison method is adopted to detect QRS complex. Reducing the effect of noise to the minimum, we grouped ECG by 5 data and compared the amplitude of maximum value. To recognize the ECG .signal pattern, we adopted the polynomial approximation partially and statistical method. The polynomial approximation makes possible to compare some ECG signal with different frequency and sampling period. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. After removing the distorted ECG by calculating the difference between the orignal ECG and the approximated ECG for polynomial, we compared the approximated ECG pattern with the database, and we detected and classified abnormality of ECG.

웨이브렛 변환을 이용한 스트레스 심전도 분석 알고리즘의 개발 (Development of a Stress ECG Analysis Algorithm Using Wavelet Transform)

  • 이경중;박광리
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.269-278
    • /
    • 1998
  • 본 논문에서는 스트레스 심전도를 분석함에 있어서 가장 중요한 파라미터인 ST 세그먼트를 측정하기 위해서 웨이브렛 변환을 이용하여 Wavelet Adaptive Filter(WAF)와 QRS콤플렉스 검출 알고리즘을 설계하였다. WAF는 웨이브렛 변환부와 적응필터부로 구성되어 있으며, 웨이브렛 변환부에서는 웨이브렛 함수를 이용하여 입력되는 심전도 신호를 저주파 대역과 고주파 대역으로 각각 j=-7레벨까지 분할하고, 적응필터부에서는 웨이브렛 변환에 의해 분할된 신호중 j=-7레벨의 저주파 대역 신호를 주입력으로 사용하여 필터링 한다. QRS 콤플레스는 합산신호를 구성한 후 문턱치를 RR간격에 변화에 따라 변화시키면서 검출하였으며, 합산신호는 웨이브렛 변환에 의해 QRS 콤플렉스의 주파수 성분이 포함되어 있는 고주파 대역의 신호를 더하여 구성하였다. WAF는 표준 필터와 일반적인 적응필터와 성능을 비교하였으며, 잡음제거 특성과 신호왜곡도 측면에서 비교필터에 비해 우수한 성능을 보였다. QRS 콤플렉스 검출성능을 평가하기 위해서 MIT/BIH데이터베이스를 이용하여 기존의 QRS 검출 알고리즘들의 검출 방법과 비교하였으며, 웨이브렛에 의한 합산신호를 이용할 경우에 99..67%로써 더 좋은 검출성능을 보였다. 또한 측정된 ST세그먼트의 정확도를 비교.평가를 위하여 European ST-T 데이터베이스와 실제 임상데이터를 이용하였으며 심박수의 변화에 따라 적응적으로 ST세그먼트를 측정할 수 있었다.

  • PDF

실시간 QRS 검출을 위한 파라미터 estimation 기법에 관한 연구 (A Study on method development of parameter estimation for real-time QRS detection)

  • 김응석;이정환;윤지영;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.193-196
    • /
    • 1995
  • An algorithm using topological mapping has been developed for a real-time detection of the QRS complexes of ECG signals. As a measurement of QRS complex energy, we used topological mapping from one dimensional sampled ECG signals to two dimensional vectors. These vectors are reconstructed with the sampled ECG signals and the delayed ones. In this method, the detection rates of CRS complex vary with the parameters such as R-R interval average and peak detection threshold coefficient. We use mean, median, and iterative method to determint R-R interval average and peak estimation. We experiment on various value of search back coefficient and peak detection threshold coefficient to find optimal rule.

  • PDF

QRS 파의 증대를 위한 신경망 ALE 설계 (Design of neural network based ALE for QRS enhancement)

  • 원상철;박종철;최한고
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.217-220
    • /
    • 2000
  • This paper describes the application of a neural network based adaptive line enhancer (ALE) for enhancement of the weak QRS complex corrupted with background noise. Modified fully-connected recurrent neural network is used as a nonlinear adaptive filter in the ALE. The connecting weights between network nodes as well as the parameters of the node activation function are updated at each iteration using the gradient descent algorithm. The real ECG signal buried with moderate and severe background noise is applied to the ALE. Simulation results show that the neural network based ALE performs well the enhancement of the QRS complex from noisy ECG signals.

  • PDF