• Title/Summary/Keyword: QFP100 패키지

Search Result 2, Processing Time 0.015 seconds

Laser Soldering and Inspection of the Solder Joint (레이저 솔더링과 접합부 평가)

  • 한유희;김인웅;방남주
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 1999
  • As very large scale integration technology has been developed, much more accurate, reliable technology is needed for outer lead bonding. Laser soldering has been researched as an alternative for fine pitch device bonding. This study is focused on how to select optimal laser soldering variables with which solder wets parent material, the microstructural results of laser soldering and the reliability test One of popular packages, QFP100 was soldered successfully with two kinds of solder. The inspection of the joint for reliability was carried out by optical microscope, SEM, EDAX and pull test, which demonstrated the superiority of laser soldering.

  • PDF

Design of a DSSS MODEM Architecture for Wireless LAN (무선 LAN용 직접대역확산 방식 모뎀 아키텍쳐 설계)

  • Chang, Hyun-Man;Ryu, Su-Rim;Sunwoo, Myung-Hoon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.18-26
    • /
    • 1999
  • This paper presents the architecture and design of a DSSS MODEM ASIC chip for wireless local area networks (WLAN). The implemented MODEM chip supports the DSSS physical layer specifications of the IEEE 802.11. The chip consits of a transmitter and a receiver which contain a CRC encoder/decoder, a differential encoder/decoder, a frequency offset compensator and a timing recovery circuit. The chip supports various data rates, i.e., 4,2 and 1Mbps and provides both DBPSK and DQPSK for data modulation. We have performed logic synthesis using the $SAMSUNG^{TM}$ $0.6{\mu}m$ gate array library and the implemented chip consists of 53,355 gates. The MODEM chip operates at 44MHz, the package type is 100-pin QFP and the power consumption is 1.2watt at 44MHz. The implemented MODEM architecture shows lower BER compared with the Harris HSP3824.

  • PDF