• 제목/요약/키워드: QANet

검색결과 1건 처리시간 0.017초

I-QANet: 그래프 컨볼루션 네트워크를 활용한 향상된 기계독해 (I-QANet: Improved Machine Reading Comprehension using Graph Convolutional Networks)

  • 김정훈;김준영;박준;박성욱;정세훈;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1643-1652
    • /
    • 2022
  • Most of the existing machine reading research has used Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) algorithms as networks. Among them, RNN was slow in training, and Question Answering Network (QANet) was announced to improve training speed. QANet is a model composed of CNN and self-attention. CNN extracts semantic and syntactic information well from the local corpus, but there is a limit to extracting the corresponding information from the global corpus. Graph Convolutional Networks (GCN) extracts semantic and syntactic information relatively well from the global corpus. In this paper, to take advantage of this strength of GCN, we propose I-QANet, which changed the CNN of QANet to GCN. The proposed model performed 1.2 times faster than the baseline in the Stanford Question Answering Dataset (SQuAD) dataset and showed 0.2% higher performance in Exact Match (EM) and 0.7% higher in F1. Furthermore, in the Korean Question Answering Dataset (KorQuAD) dataset consisting only of Korean, the learning time was 1.1 times faster than the baseline, and the EM and F1 performance were also 0.9% and 0.7% higher, respectively.