• Title/Summary/Keyword: Q4120

Search Result 2, Processing Time 0.017 seconds

Epicenter Estimation Using Real-Time Event Packet of Quanterra digitizer (Quanterra 기록계의 실시간 이벤트 패킷을 이용한 진앙 추정)

  • Lim, In-Seub;Sheen, Dong-Hoon;Shin, Jin-Soo;Jung, Soon-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.316-327
    • /
    • 2009
  • A standard for national seismological observatory was proposed on 1999. Since then, Quanterra digitizer has been installed and is operating on almost all of seismic stations which belong to major seismic monitoring organizations. Quanterra digitizer produce and transmit real-time event packet and data packet. Characteristics of event packet and arrival time of each channel's data packet on data center were investigated. Packet selection criteria using signal to noise ratio (hereafter SNR) and signal period from real-time event packet based on 100 samples per second (hereafter sps) velocity data were developed. Estimation of epicenter using time information of the selected event packet were performed and tested. A series of experiment show that event packets were received approximately 3~4 second earlier than data packets and the number of event packet was only 0.3% compare to data packets. Just about 5% against all of event packets were selected as event packet were related P wave of real earthquake. Using the selected event packets we can estimate an epicenter with misfit less than 10 km within 20 sec for local earthquake over magnitude 2.5.

A Method of Rating Curve Adjustment (수위유량곡선보정방법에 대하여)

  • 박정근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4116-4120
    • /
    • 1976
  • With the use of many rivers increased nearly to the capacity, the need for information concerning daily quantities of water and the total annual or seasonal runoff has became increased. A systematic record of the flow of a river is commonly made in terms of the mean daily discharge Since. a single observation of stage is converted into discharge by means of rating curve, it is essential that the stage discharge relations shall be accurately established. All rating curves have the looping effect due chiefly to channel storage and variation in surface slope. Loop rating curves are most characteristic on streams with somewhat flatter gradients and more constricted channels. The great majority of gauge readings are taken by unskilled observers once a day without any indication of whether the stage is rising or falling. Therefore, normal rating curves shall show one discharge for one gauge height, regardless of falling or rising stage. The above reasons call for the correction of the discharge measurements taken on either side of flood waves to the theoretical steady-state condition. The correction of the discharge measurement is to consider channel storage and variation in surface slope. (1) Channel storage As the surface elevation of a river rises, water is temporarily stored in the river channel. There fore, the actual discharge at the control section can be attained by substracting the rate of change of storage from the measured discharge. (2) Variation in surface slope From the Manning equation, the steady state discharge Q in a channel of given roughness and cross-section, is given as {{{{Q PROPTO SQRT { 1} }}}} When the slope is not equal, the actual discharge will be {{{{ { Q}_{r CDOT f } PROPTO SQRT { 1 +- TRIANGLE I} CDOT TRIANGLE I }}}} may be expressed in the form of {{{{ TRIANGLE I= { dh/dt} over {c } }}}} and the celerity is approximately equal to 1.3 times the mean watrr velocity. Therefore, The steady-state discharge can be estimated from the following equation. {{{{Q= { { Q}_{r CDOT f } } over { SQRT { (1 +- { A CDOT dh/dt} over {1.3 { Q}_{r CDOT f }I } )} } }}}} If a sufficient number of observations are available, an alternative procedure can be applied. A rating curve may be drawn as a median line through the uncorrected values. The values of {{{{ { 1} over {cI } }}}} can be yielded from the measured quantities of Qr$.$f and dh/dt by use of Eq. (7) and (8). From the 1/cI v. stage relationship, new vlues of 1/cI are obtained and inserted in Eq. (7) and (8) to yield the steady-state discharge Q. The new values of Q are then plotted against stage as the corrected steadystate curve.

  • PDF