• Title/Summary/Keyword: Q-mass analyzing method

Search Result 13, Processing Time 0.018 seconds

Vegetation Structure of Abies nephrolepis Forest in Mt. Doota and Mt. Cheongok, Gangwon-do, Korea (강원도 두타산과 청옥산 일대 분비나무림의 식생 구조 분석)

  • Shin, Dong-Bin;Oh, Seung-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.413-421
    • /
    • 2022
  • This study was conducted to identify the vegetation structure of the Abies nephrolepis forests by analyzing species composition in Mt. Doota and Mt. Cheongok in the Gangwon region with the phytosociological method. In order to perform a field investigation, 18 survey areas with an area of about 400 m2 were set up for the stands where A. nephrolepis grow wild. Communities were classified through TWINSPAN and visualized using DCA (Detrended Correspondence Analysis). Species diversity analysis, importance value analysis, and DBH class analysis were employed to identify the characteristics of each community. As a result, the A. nephrolepis forests in Mt. Doota and Mt. Cheongok have been classified into 4 communities; GroupI, II, III and IV. GroupIis Quercus mongolica-A. nephrolepis competitive forest dominated by Q. mongolica and A. nephrolepis in the order. Group II is A. nephrolepis-Betula ermanii competitive forest dominated by A. nephrolepis, Sorbus commixta, and B. ermanii in the order. Group III is dominated by A. nephrolepis, but is expected to have competition between A. nephrolepis and Q. mongolica in the future due to the mass occurrence of Q. mongolica saplings. A. nephrolepis, S. commixta, and Q. mongolica are the dominant species in Group IV, and A. nephrolepis is the major dominant species in all layers. The species diversity of the A. nephrolepis forests in Mt. Doota and Mt. Cheongok is lower than other A. nephrolepis forests in Mt. Seorak, Maruguem, and Mt. Odae. It is necessary to establish conservation measures and to continuously monitor the A. nephrolepis forests in Mt. Doota and Mt. Cheongokis due to the harsh environment and the competition that may occur between A. nephrolepis and deciduous trees such as Q. mongolica in the future.

Detection of Single Nucleotide Polymorphism in Human IL-4 Receptor by PCR Amplification of Specific Alleles

  • Hwang, Sue Yun;Kim, Seung Hoon;Hwang, Sung Hee;Cho, Chul Soo;Kim, Ho Youn
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.153-156
    • /
    • 2001
  • A key aspect of genomic research in the “post-genome era”is to associate sequence variations with heritable phenotypes. The most common variations in the human genome are single nucleotide polymorphisms (SNPs) that occur approximately once in every 500 to 1,000 bases. Although analyzing the phenotypic outcome of these SNPs is crucial to facilitate large-scale association studies of genetic diseases, detection of SNPs from an extended number of human DNA samples is often difficult, labor-intensive and time-consuming. Recent development in SNP detection methods using DNA microarrays and mass spectrophotometry has allowed automated high throughput analyses, but such equipments are not accessible to many scientists. In this study, we demonstrate that a simple PCR-based method using primers with a mismatched base at the 3'-end provides a fast and easy tool to identify known SNPs from human genomic DNA in a regular molecular biology laboratory. Results from this PCR amplification of specific alleles (PASA) analysis efficiently and accurately typed the Q576R polymorphism of human IL4 receptor from the genomic DNAs of 29 Koreans, including 9 samples whose genotype could not be discerned by the conventiona1 PCR-SSCP (single strand conformation polymorphism) method. Given the increasing attention to disease-associated polymorphisms in genomic research, this alternative technique will be very useful to identify SNPs in large-scale population studies.

  • PDF

A New Removal Method of Glutelin Storage Proteins for the Proteome Study of Non-Glutelin Proteins in Rice Seeds (벼종자 미랑 단백질의 프로테오믹스 연구를 위한 글루테린 저장 단백질의 제거방법)

  • Woo, Sun-Hee;Kim, Se-Young;Kim, Tae-Seon;Cho, Seong-Woo;Cho, Kun;Chung, Keun-Yook;Kim, Sun-Lim;Cho, Yong-Gu;Kim, Hong-Sig;Song, Boem-Heon;Lee, Chul-Won;Jong, Seung-Keun;Park, Young-Mok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.92-102
    • /
    • 2006
  • Abundant proteins often cause problems in proteome study. Glutelin family proteins (hereafter referred to glutelin) are present in rice proteome sample as over-whelming constituents with very high abundance. In order to increase the number of identified proteins in rice proteome study, we developed a newly improved method for sample preparation through the removal of glutelin. When the protein samples from rice seed were extracted by the conventional trichloroacetic acid (TCA) extraction method, glutelin accounts for about 60% of total rice seed proteins in SDS gels. Using our new water extraction method, glutelin consists of only about 10% of total proteins. After analyzing on a two-dimensional gel electrophoresis (2-DE), 937 protein spots were detected using the conventional TCA extraction method. On the other hand, 1240 proteins could be seen using the new water extraction method. The selectivity for non-glutelin and less abundant protein by the water extraction method was also confirmed by ESI-Q/TOF mass spectrometry analysis. Thus, the new water extraction method developed here can be efficiently used to study the proteome analysis of rice storage seed.