• 제목/요약/키워드: Q 학습

검색결과 290건 처리시간 0.035초

매크로 행동을 이용한 내시 Q-학습의 성능 향상 기법 (A Performance Improvement Technique for Nash Q-learning using Macro-Actions)

  • 성연식;조경은;엄기현
    • 한국멀티미디어학회논문지
    • /
    • 제11권3호
    • /
    • pp.353-363
    • /
    • 2008
  • 단일 에이전트 환경에서는 Q-학습의 학습 시간을 줄이기 위해서 학습결과를 전파시키거나 일렬의 행동을 패턴으로 만들어 학습한다. 다중 에이전트 환경에서는 동적인 환경과 다수의 에이전트 상태를 고려해야하기 때문에 학습에 필요한 시간이 단일 에이전트 환경보다 길어지게 된다. 이 논문에서는 단일 에이전트 환경에서 시간 단축을 위해서 유한개의 행동으로 정책을 만들어 학습하는 매크로 행동을 다중 에이전트 환경에 적합한 내시 Q-학습에 적용함으로써 다중 에이전트 환경에서 Q-학습 시간을 줄이고 성능을 높이는 방법을 제안한다. 실험에서는 다중 에이전트 환경에서 매크로 행동을 이용한 에이전트와 기본 행동만 이용한 에이전트의 내시 Q-학습 성능을 비교했다. 이 실험에서 네 개의 매크로 행동을 이용한 에이전트가 목표를 수행할 성공률이 기본 행동만 이용한 에이전트 보다 9.46% 높은 결과를 얻을 수 있었다. 매크로 행동은 기본 행동만을 이용해서 적합한 이동 행동을 찾아도 매크로 행동을 이용한 더 낳은 방법을 찾기 때문에 더 많은 Q-값의 변화가 발생되었고 전체 Q-값 합이 2.6배 높은 수치를 보였다. 마지막으로 매크로 행동을 이용한 에이전트는 약 절반의 행동 선택으로도 시작위치에서 목표위치까지 이동함을 보였다. 결국 에이전트는 다중 에이전트 환경에서 매크로 행동을 사용함으로써 성능을 향상시키고 목표위치까지 이동하는 거리를 단축해서 학습 속도를 향상시킨다.

  • PDF

강화학습의 Q-learning을 위한 함수근사 방법 (A Function Approximation Method for Q-learning of Reinforcement Learning)

  • 이영아;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권11호
    • /
    • pp.1431-1438
    • /
    • 2004
  • 강화학습(reinforcement learning)은 온라인으로 환경(environment)과 상호작용 하는 과정을 통하여 목표를 이루기 위한 전략을 학습한다. 강화학습의 기본적인 알고리즘인 Q-learning의 학습 속도를 가속하기 위해서, 거대한 상태공간 문제(curse of dimensionality)를 해결할 수 있고 강화학습의 특성에 적합한 함수 근사 방법이 필요하다. 본 논문에서는 이러한 문제점들을 개선하기 위해서, 온라인 퍼지 클러스터링(online fuzzy clustering)을 기반으로 한 Fuzzy Q-Map을 제안한다. Fuzzy Q-Map은 온라인 학습이 가능하고 환경의 불확실성을 표현할 수 있는 강화학습에 적합한 함수근사방법이다. Fuzzy Q-Map을 마운틴 카 문제에 적용하여 보았고, 학습 초기에 학습 속도가 가속됨을 보였다.

연속적인 Q-학습을 이용한 자율이동로봇의 회피행동 구현 (Avoidance Behavior of Autonomous Mobile Robots using the Successive Q-learning)

  • 김민수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2660-2662
    • /
    • 2001
  • Q-학습은 최근에 연구되는 강화학습으로서 환경에 대한 정의가 필요 없어 자율이동로봇의 행동학습에 적합한 방법이다. 그러나 다개체 시스템의 학습처럼 환경이 복잡해짐에 따라 개체의 입출력 변수는 늘어나게 되고 Q함수의 계산량은 기하급수적으로 증가하게 된다. 따라서 이러한 문제를 해결하기 위해 다개체 시스템의 Q-학습에 적합한 연속적인 Q-학습 알고리즘을 제안하였다. 연속적인 Q-학습 알고리즘은 개체가 가질 수 있는 모든 상태-행동 쌍을 하나의 Q함수에 표현하는 방법으로서 계산량 및 복잡성을 줄임으로써 동적으로 변하는 환경에 능동적으로 대처하도록 하였다. 제안한 연속적인 Q-학습 알고리즘을 벽으로 막힌 공간에서 두 포식자와 한 먹이로 구성되는 먹이-포식자 문제에 적용하여 먹이개체의 효율적인 회피능력을 검증하였다.

  • PDF

강화 학습에서의 탐색과 이용의 균형을 통한 범용적 온라인 Q-학습이 적용된 에이전트의 구현 (Implementation of the Agent using Universal On-line Q-learning by Balancing Exploration and Exploitation in Reinforcement Learning)

  • 박찬건;양성봉
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.672-680
    • /
    • 2003
  • shopbot이란 온라인상의 판매자로부터 상품에 대한 가격과 품질에 관한 정보를 자동적으로 수집함으로써 소비자의 만족을 최대화하는 소프트웨어 에이전트이다 이러한 shopbot에 대응해서 인터넷상의 판매자들은 그들에게 최대의 이익을 가져다 줄 수 있는 에이전트인 pricebot을 필요로 할 것이다. 본 논문에서는 pricebot의 가격결정 알고리즘으로 비 모델 강화 학습(model-free reinforcement learning) 방법중의 하나인 Q-학습(Q-learning)을 사용한다. Q-학습된 에이전트는 근시안적인 최적(myopically optimal 또는 myoptimal) 가격 결정 전략을 사용하는 에이전트에 비해 이익을 증가시키고 주기적 가격 전쟁(cyclic price war)을 감소시킬 수 있다. Q-학습 과정 중 Q-학습의 수렴을 위해 일련의 상태-행동(state-action)을 선택하는 것이 필요하다. 이러한 선택을 위해 균일 임의 선택방법 (Uniform Random Selection, URS)이 사용될 경우 최적 값의 수렴을 위해서 Q-테이블을 접근하는 회수가 크게 증가한다. 따라서 URS는 실 세계 환경에서의 범용적인 온라인 학습에는 부적절하다. 이와 같은 현상은 URS가 최적의 정책에 대한 이용(exploitation)의 불확실성을 반영하기 때문에 발생하게 된다. 이에 본 논문에서는 보조 마르코프 프로세스(auxiliary Markov process)와 원형 마르코프 프로세스(original Markov process)로 구성되는 혼합 비정적 정책 (Mixed Nonstationary Policy, MNP)을 제안한다. MNP가 적용된 Q-학습 에이전트는 original controlled process의 실행 시에 Q-학습에 의해 결정되는 stationary greedy 정책을 사용하여 학습함으로써 auxiliary Markov process와 original controlled process에 의해 평가 측정된 최적 정책에 대해 1의 확률로 exploitation이 이루어질 수 있도록 하여, URS에서 발생하는 최적 정책을 위한 exploitation의 불확실성의 문제를 해결하게 된다. 다양한 실험 결과 본 논문에서 제한한 방식이 URS 보다 평균적으로 약 2.6배 빠르게 최적 Q-값에 수렴하여 MNP가 적용된 Q-학습 에이전트가 범용적인 온라인 Q-학습이 가능함을 보였다.

영향력 분포도를 이용한 Q-학습 (Q-learning Using Influence Map)

  • 성연식;조경은
    • 한국멀티미디어학회논문지
    • /
    • 제9권5호
    • /
    • pp.649-657
    • /
    • 2006
  • 강화학습이란 환경에 대한 정보가 주어지지 않았을 때 현재의 상태에서 가능한 행동들을 취한 후 얻어지는 보상값이 가장 큰 행동을 최적의 행동 전략으로 학습하는 것이다. 강화학습에서 가장 많이 사용하는 Q-학습은 환경의 특정 상태에서 가능한 행동 중에 하나를 선택해서 취한 행동으로 얻어지는 보상값으로 구성되는데 실세계 상태를 이산값으로 표현하기에는 많은 어려움이 있다. 상태를 많이 정의하면 그만큼 학습에 필요한 시간이 많아지게 되고 반대로 상태 공간을 줄이면 다양한 환경상태를 한 개의 환경상태로 인지를 하고 그 환경에 맞는 한 가지의 행동만 취하도록 학습하기 때문에 행동이 단순해진다. 본 논문에서는 학습 시간을 단축하기 위해 상태 공간을 줄이는 데서 발생하는 행동의 단순화의 단점을 보완하기 위한 방법으로 영향력 분포도를 이용한 Q-학습 방법을 제안한다. 즉, 영향력 분포도와 인접한 학습 결과를 이용해서 학습하지 못한 중간 상태에 적합한 행동을 취하게 하여 동일한 상태 개수에 대해서 학습 시간을 단축하는 것이다. 동일한 학습 시간 동안에 일반적인 강화학습 방법으로 학습한 에이전트와 영향력 분포도와 강화학습을 이용해서 학습한 에이전트의 성능을 비교해 보았을 때 영향력 분포도와 강화학습을 이용해서 학습한 에이전트가 단지 일반적인 강화학습에 필요한 상태공간의 4.6%만 정의를 하고도 성능 면에서는 거의 비슷한 효과를 볼 수가 있음을 확인하였다. 이는 영향력 분포도와 강화학습을 이용한 학습이 일반적인 강화학습에 비해서 학습 속도가 2.77배정도 빨리 이루어지고 실제 학습해야 할 상태 공간의 개수가 적어져서 발생되는 문제를 영향력 분포도를 이용해서 보완을 하기 때문이다.

  • PDF

강화학습 Q-learning 기반 복수 행위 학습 램프 로봇 (Multi Behavior Learning of Lamp Robot based on Q-learning)

  • 권기현;이형봉
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.35-41
    • /
    • 2018
  • 강화학습기반 Q-learning 알고리즘은 이산적인 상태와 액션의 조합을 사용하여, 한 번에 하나의 행위에 대한 목표를 학습하는데 유용하다. 여러 액션을 학습하기 위해서는 행위 기반 아키텍처를 적용하고 적절한 행위 조절 방법을 사용하면 로봇으로 하여금 빠르고 신뢰성 있는 액션을 가능하게 할 수 있다. Q-learning은 인기 있는 강화학습 방법으로 단순하고, 수렴성이 있고 사전 훈련 환경에 영향을 덜 받는 특성(off-policy)으로 인해 로봇 학습에 많이 사용되고 있다. 본 논문에서는 Q-learning 알고리즘을 램프 로봇에 적용하여 복수 행위(사람인식, 책상의 물체 인식)를 학습시키는데 사용하였다. Q-learning의 학습속도(learning rate)는 복수 행위 학습 단계의 로봇 성능에 영향을 줄 수 있으므로 학습속도 변경을 통해 최적의 복수 행위 학습 모델을 제시한다.

강화학습에 기초한 로봇 축구 에이전트의 동적 위치 결정 (Reinforcement Learning based Dynamic Positioning of Robot Soccer Agents)

  • 권기덕;김인철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.55-57
    • /
    • 2001
  • 강화학습은 한 에이전트가 자신이 놓여진 환경으로부터의 보상을 최대화할 수 있는 최적의 행동 전략을 학습하는 것이다. 따라서 강화학습은 입력(상태)과 출력(행동)의 쌍으로 명확한 훈련 예들이 제공되는 교사 학습과는 다르다. 특히 Q-학습과 같은 비 모델 기반(model-free)의 강화학습은 사전에 환경에 대한 별다른 모델을 설정하거나 학습할 필요가 없으며 다양한 상태와 행동들을 충분히 자주 경험할 수만 있으면 최적의 행동전략에 도달할 수 있어 다양한 응용분야에 적용되고 있다. 하지만 실제 응용분야에서 Q-학습과 같은 강화학습이 겪는 최대의 문제는 큰 상태 공간을 갖는 문제의 경우에는 적절한 시간 내에 각 상태와 행동들에 대한 최적의 Q값에 수렴할 수 없어 효과를 거두기 어렵다는 점이다. 이런 문제점을 고려하여 본 논문에서는 로봇 축구 시뮬레이션 환경에서 각 선수 에이전트의 동적 위치 결정을 위해 효과적인 새로운 Q-학습 방법을 제안한다. 이 방법은 원래 문제의 상태공간을 몇 개의 작은 모듈들로 나누고 이들의 개별적인 Q-학습 결과를 단순히 결합하는 종래의 모듈화 Q-학습(Modular Q-Learning)을 개선하여, 보상에 끼친 각 모듈의 기여도에 따라 모듈들의 학습결과를 적응적으로 결합하는 방법이다. 이와 같은 적응적 중재에 기초한 모듈화 Q-학습법(Adaptive Mediation based Modular Q-Learning, AMMQL)은 종래의 모듈화 Q-학습법의 장점과 마찬가지로 큰 상태공간의 문제를 해결할 수 있을 뿐 아니라 보다 동적인 환경변화에 유연하게 적응하여 새로운 행동 전략을 학습할 수 있다는 장점을 추가로 가질 수 있다. 이러한 특성을 지닌 AMMQL 학습법은 로봇축구와 같이 끊임없이 실시간적으로 변화가 일어나는 다중 에이전트 환경에서 특히 높은 효과를 볼 수 있다. 본 논문에서는 AMMQL 학습방법의 개념을 소개하고, 로봇축구 에이전트의 동적 위치 결정을 위한 학습에 어떻게 이 학습방법을 적용할 수 있는지 세부 설계를 제시한다.

  • PDF

Q-learning을 이용한 이동 로봇의 실시간 경로 계획 (Real-Time Path Planning for Mobile Robots Using Q-Learning)

  • 김호원;이원창
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.991-997
    • /
    • 2020
  • 강화학습은 주로 순차적인 의사 결정 문제에 적용되어 왔다. 특히 최근에는 신경망과 결합한 형태로 기존에는 해결하지 못한 분야에서도 성공적인 결과를 내고 있다. 하지만 신경망을 이용하는 강화학습은 현장에서 즉각적으로 사용하기엔 너무 복잡하다는 단점이 있다. 본 논문에서는 학습이 쉬운 강화학습 알고리즘 중 하나인 Q-learning을 이용하여 이동 로봇의 경로를 생성하는 알고리즘을 구현하였다. Q-table을 미리 만드는 방식의 Q-learning은 명확한 한계를 가지기 때문에 실시간으로 Q-table을 업데이트하는 실시간 Q-learning을 사용하였다. 탐험 전략을 조정하여 실시간 Q-learning에 필요한 학습 속도를 얻을 수 있었다. 마지막으로 실시간 Q-learning과 DQN의 성능을 비교하였다.

$\varepsilon$-SVR을 이용한 Neural-Q 기법 (Neural -Q met,hod based on $\varepsilon$-SVR)

  • 조원희;김영일;박주영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.162-165
    • /
    • 2002
  • Q-learning은 강화학습의 한 방법으로서, 여러 분야에 널리 응용되고 있는 기법이다. 최근에는 Linear Quadratic Regulation(이하 LQR) 문제에 성공적으로 적용된 바 있는데, 특히, 시스템모델의 파라미터에 대한 구체적인 정보가 없는 상태에서 적절한 입력과 출력만을 가지고 학습을 통해 문제를 해결할 수 있어서 상황에 따라서 매우 실용적인 대안이 될 수 있다. Neural Q-learning은 이러한 Q-learning의 Q-value를 MLP(multilayer perceptron) 신경망의 출력으로 대치시킴으로써, 비선형 시스템의 최적제어 문제를 다룰 수 있게 한 방법이다. 그러나, Neural Q방식은 신경망의 구조를 먼저 결정한 후 역전파 알고리즘을 이용하여 학습하는 절차를 취하기 때문에, 시행착오를 통하여 신경망 구조를 결정해야 한다는 점, 역전파 알고리즘의 적용으로 인해 신경망의 연결강도 값들이 지역적 최적해로 수렴한다는 점등의 문제점을 상속받는 한계가 있다. 따라서, 본 논문에서는 Neural-0 학습의 도구로, 역전파 알고리즘으로 학습되는 MLP 신경망을 사용하는 대신 최근 들어 여러 분야에서 그 성능을 인정받고 있는 서포트 벡터 학습법을 사용하는 방법을 택하여, $\varepsilon$-SVR(Epsilon Support Vector Regression)을 이용한 Q-value 근사 기법을 제안하고 관련 수식을 유도하였다. 그리고, 모의 실험을 통하여, 제안된 서포트 벡터학습 기반 Neural-Q 방법의 적용 가능성을 알아보았다.

강화학습의 학습 가속을 위한 함수 근사 방법 (Function Approximation for accelerating learning speed in Reinforcement Learning)

  • 이영아;정태충
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.635-642
    • /
    • 2003
  • 강화학습은 제어, 스케쥴링 등 많은 응용분야에서 성공적인 학습 결과를 얻었다. 기본적인 강화학습 알고리즘인 Q-Learning, TD(λ), SARSA 등의 학습 속도의 개선과 기억장소 등의 문제를 해결하기 위해서 여러 함수 근사방법(function approximation methods)이 연구되었다. 대부분의 함수 근사 방법들은 가정을 통하여 강화학습의 일부 특성을 제거하고 사전지식과 사전처리가 필요하다. 예로 Fuzzy Q-Learning은 퍼지 변수를 정의하기 위한 사전 처리가 필요하고, 국소 최소 자승법은 훈련 예제집합을 이용한다. 본 논문에서는 온-라인 퍼지 클러스터링을 이용한 함수 근사 방법인 Fuzzy Q-Map을 제안하다. Fuzzy Q-Map은 사전 지식이 최소한으로 주어진 환경에서, 온라인으로 주어지는 상태를 거리에 따른 소속도(membership degree)를 이용하여 분류하고 행동을 예측한다. Fuzzy Q-Map과 다른 함수 근사 방법인 CMAC와 LWR을 마운틴 카 문제에 적용하여 실험 한 결과 Fuzzy Q-Map은 훈련예제를 사용하지 않는 CMAC보다는 빠르게 최고 예측율에 도달하였고, 훈련 예제를 사용한 LWR보다는 낮은 예측율을 보였다.