• Title/Summary/Keyword: Q*f

Search Result 1,359, Processing Time 0.029 seconds

SMARANDACHE WEAK BE-ALGEBRAS

  • Saeid, Arsham Borumand
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.489-496
    • /
    • 2012
  • In this paper, we introduce the notions of Smarandache weak BE-algebra, Q-Smarandache filters and Q-Smarandache ideals. We show that a nonempty subset F of a BE-algebra X is a Q-Smarandache filter if and only if $A(x,y){\subseteq}F$, which A($x,y$) is a Q-Smarandache upper set The relationship between these notions are stated and proved.

NOTES ON MDS SELF-DUAL CODES

  • Han, Sunghyu
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.821-827
    • /
    • 2012
  • In this paper, we prove that for all odd prime powers $q$ there exist MDS(maximum distance separable) self-dual codes over $\mathbb{F}_{q^2}$ for all even lengths up to $q+1$. Additionally, we prove that there exist MDS self-dual codes of length four over $\mathbb{F}_q$ for all $q$ > 2, $q{\neq}5$.

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

Comparative Analysis of the Q Value between the Crust of the Seoul Metropolitan Area and the Eastern Kyeongsang Basin (수도권과 경상 분지 동부 지역 지각의 Q 값 비교 분석)

  • Park, Yoon-Jung;Kyung, Jai-Bok;Do, Ji-Young
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.720-732
    • /
    • 2007
  • For the Seoul metropolitan area and the eastern Kyeongsang Basin, we simultaneously calculated $Q_P^{-1}$ and $Q_S^{-1}$ by applying the extended coda-normalization method for 98 seismograms of local Earthquakes. As frequency increases from 1.5 Hz to 24 Hz, the result decreased from $(4.0{\pm}9.2){\times}10^{-3}$ to $(4.1{\pm}4.2){\times}10^{-4}$ for $Q_P^{-1}$ and $(5.5{\pm}5.6){\times}10^{-3}$ to $(3.4{\pm}1.3){\times}10^{-4}$ for $Q_S^{-1}$ in Seoul Metropolitan Area. The result of eastern Kyeongsang basin also decreased from $(5.4{\pm}8.8){\times}10^{-3}$ to $(3.7{\pm}3.4){\times}10^{-4}$ for $Q_P^{-1}$ and $(5.7{\pm}4.2){\times}10^{-3}$ to $(3.5{\pm}1.6){\times}10^{-4}$ for $Q_S^{-1}$. If we fit a frequency-dependent power law to the data, the best fits of $Q_P^{-1}$ and $Q_S^{-1}$ are $0.005f^{-0.89}$ and $0.004f^{-0.88}$ in Seoul metropolitan Area, respectively. The value of $Q_P^{-1}$ and $Q_S^{-1}$ in the eastern Kyeongsang basin are $0.007f^{-1.02}$ and $0.006f^{-0.99}$, respectively. The $Q_S^{-1}$ value of the eastern Kyeongsang basin is almost similar to Seoul metropolitan area. But the $Q_P^{-1}$ value of the eastern Kyeongsang basin is a little higher than that of Seoul metropolitan area. This may be that the crustal characteristics of the eastern Kyeongsang basin is seismologically more heterogeneous. However, these $Q_P^{-1}$ values in Korea belong to the range of seismically stable regions all over the world.

The Attenuation Structure of the South Korea: A review

  • Chung, T. W.;Noh, M. H.;Matsumoto, S.
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Fukuoka earthquake on March 20, 2005 showed the potential hazard of large events out of S. Korea. From the viewpoint of seismic hazard, seismic amplitude decrease Q-1 is very important. Related to the crustal cracks induced by the earthquakes, the value of Q-1- high Q-1 regions are more attenuating than low Q-1 regions - shows a correlation with seismic activity; relatively higher values of Q-1 have been observed in seismically active areas than in stable areas. For the southeastern and central S. Korea, we first simultaneously estimated QP-1 and QS-1 by applying the extended coda-normalization method to KIGAM and KNUE network data. Estimated QP-1 and QS-1 values are 0.009 f-1.05 and 0.004 f-0.70 for southeastern S. Korea and 0.003 f -0.54 and 0.003 f -0.42 for central S. Korea, respectively. These values agree with those of seismically inactive regions such as shield. The low QLg-1 value, 0.0018f -0.54 was also obtained by the coda normalization method. In addition, we studied QLg-1 by applying the source pair/receiver pair (SPRP) method to both domestic and far-regional events. The obtained QLg-1 for all Fc is less than 0.002, which is reasonable value for a seismically inactive region.

  • PDF

SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS

  • Qi, Xiao-Guang;Yang, Lian-Zhong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.731-745
    • /
    • 2013
  • In this paper, we investigate uniqueness problems of certain types of $q$-difference polynomials, which improve some results in [20]. However, our proof is different from that in [20]. Moreover, we obtain a uniqueness result in the case where $q$-differences of two entire functions share values as well. This research also shows that there exist two sets, such that for a zero-order non-constant meromorphic function $f$ and a non-zero complex constant $q$, $E(S_j,f)=E(S_j,{\Delta}_qf)$ for $j=1,2$ imply $f(z)=t{\Delta}_qf$, where $t^n=1$. This gives a partial answer to a question of Gross concerning a zero order meromorphic function $f(z)$ and $t{\Delta}_qf$.

REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS

  • Jung, Hwanyup
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.365-374
    • /
    • 2013
  • Let $k=\mathbb{F}_q(T)$ be a rational function field over the finite field $\mathbb{F}_q$, where q is a power of an odd prime number, and $\mathbb{A}=\mathbb{F}_q[T]$. Let ${\gamma}$ be a generator of $\mathbb{F}^*_q$. Let $\mathcal{H}_n$ be the subset of $\mathbb{A}$ consisting of monic square-free polynomials of degree n. In this paper we obtain an asymptotic formula for the mean value of $L(1,{\chi}_{\gamma}{\small{D}})$ and calculate the average value of the ideal class number $h_{\gamma}\small{D}$ when the average is taken over $D{\in}\mathcal{H}_{2g+2}$.

Ordination Analysis on the Forest Communities of Mt. Changan , Chonbuk (序列法에 依한 全北 長安山 森林群落 分析)

  • Kim, Chang-Hwan;Kil, Bong-Seop
    • The Korean Journal of Ecology
    • /
    • v.14 no.3
    • /
    • pp.231-241
    • /
    • 1991
  • The analyses of correlation, enviromental gradient, continuum and polar ordination methods were used for studing on relationships between forest vegetation and their habitats in Mt. changan, chagsu-gun, korea. influencing correlation of moisture index to the main 41species from the study area they were composed of several groups by leading species of quercus mongoulica, that of carpinus tschonoskii and that of fraxinus mandshurica. On the other hand, it was found three communities in different habitats by environmental gradient i.e. each community of f. mandshurica, mangnolia sieboldii and hydrangea serrata for. acuminata have occurred in moist place, that of c. teschonoskii and q. serrata, in mesic and that of q. mongolica, q.variabilis, rhododendron schlippenbachii, in dry. in addition an occupied distribution area was investigated according to continuum index e.g. cornus controversa,betula costata,q. variabilis, q. serrata and q. mongolica over altitudinal 800m were distributed to a habitat were forming climax by q. mongolica, and/or c. controversa, f. mandshurica, q. serrata and c. tschonoskii under altitudinal 800m were done, by g. tschonoskii. while the forest vegetation of the area was classified into 6 communities such as q. mongolica community, q. variabilis community,q. serrata community, g. tschonoskii community,c. controversa community and f. mandshurica community by means of polar ordination analysis and these have come under the influence of environmental factors.

  • PDF

A Study of Q$_P^{-1}$ and Q$_S^{-1}$ Based on Data of 9 Stations in the Crust of the Southeastern Korea Using Extended Coda Normalization Method (확장 Coda 규격화 방법에 의한 한국남동부 지각의 Q$_P^{-1}$, Q$_S^{-1}$연구)

  • Chung, Tae-Woong;Sato, Haruo;Lee, Kie-Hwa
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.500-511
    • /
    • 2001
  • For the southeastern Korea aound the Yangsan fault we measured Q$_P^{-1}$ and Q$_S^{-1}$ simultaneously by using the extended coda-normalization method for seismograms registered at 9 stations deployed by KIGAM. We analyzed 707 seismograms of local earthquakes that occurred between December 1994 and February 2000. From seismograms, bandpass filtered traces were made by applying Butterworth filter with frequency-bands of 1${\sim}$2, 2${\sim}$4, 4${\sim}$8, 8${\sim}$16 and 16${\sim}$32 Hz. Estimated Q$_P^{-1}$ and Q$_S^{-1}$ values decrease from (7${\pm}$2)${\times}$10$^{-3}$ and (5${\pm}$4)${\times}$10$^{-4}$ at 1.5 Hz to (5${\pm}$4)${\times}$10$^{-3}$ and (5${\pm}$2)${\times}$10$^{-4}$ at 24 Hz, respectively. By fitting a power-law frequency dependent to estimated values over the whole stations, we obtained 0.009 (${\pm}$0.003)f$^{-1.05({\pm}0.14)$ for Q$_P^{-1}$ and 0.004 (${\pm}$0.001)f$^{-0.75({\pm}0.14)$) for Q$_S^{-1}$, where f is frequency in Hz.

  • PDF

ON A FUNCTIONAL EQUATION ASSOCIATED WITH STOCHASTIC DISTANCE MEASURES

  • Sahoo, P.K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.287-303
    • /
    • 1999
  • The general solution of the functional equation f1(pr, qs) + f2(ps, qr) = g(p,q) + h(r,s) for p, q, r, s $\in$] 0, 1[will be investigated without any regularity assumptions on the unknown functions f1, f2, g, h:]0.1[->R.

  • PDF