• Title/Summary/Keyword: Pythium aphanidermatum

Search Result 16, Processing Time 0.018 seconds

Occurrence of Pythium Blight Caused by Pythium aphanidermatum on Chewing Fescue (Pythium aphanidermatum에 의한 Chewing Fescue에 잎마름병 발생)

  • Chang, Taehyun;Lee, Yong Se
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.306-311
    • /
    • 2013
  • Pythium blight occurred by Pythium aphanidermatum on chewing fescue cv. "Jamestowm II" from early June, 2010 and 2011 at the test field in Daegu University in Gyeongbuk Province, Korea. Disease symptoms on the turfgrass were leaf blights dying from the leaf tip and root rot, which appeared patches of brown to dark brown color or gray brown color in the field. The pathogens (40-1 isolate) of Pythium blight was isolated from the diseased leaf and crown tissue and cultured on potato-dextrose agar (PDA) for identification. Lobulate sporangia were inflated, complex structures, and filamentous sporangia were usually indistinguishable from vegetative hyphae. Sequences of ribosomal RNA gene of the fungus were homologous with similarity of 100% to those of P. aphanidermatum isolates in GenBank database. Pathogenicity was also confirmed on the chewing fescue, creeping betgrass and Kentucky bluegrass by Koch's postulates. This is the first report of Pythium blight on chewing fescue caused by P. aphanidermatum in Korea.

Biological control of Pythium damping-off of cucumber by Bacillus stearothermophilus YC4194 (Bacillus stearothermophilus YC4194에 의한 Pythium 모잘록병의 생물학적 방제)

  • Yang, Hyun-Sook;Sohn, Hwang-Bae;Chung, Young-Ryun
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.234-238
    • /
    • 2002
  • In vitro and in vivo activities of a biocontrol agent, Bacillus stearothermophilus strain YC4194 was evaluated for the control of Pythium damping-off of cucumber. B. stearothermophilus YC4194 inhibited germination of cystospores and formation of zoosporangia of Pythium aphanidermatum in vitro. Incorporation of a bentonite and talc based formulation(10$^{9}$ cfu/g) of B. stearothermophilus YC4194 to the nursery soils (10 g/ι soil) resulted In a significant (p=0.01) reduction in the disease severity of cucumber damping-off after inoculation with P. aphanidermatum. The control efficacy of B. stearothermophilus YC4194 formulation was not different from that of the fungicides, dimethomorph, metalaxyl, ethaboxam. When the cucumber plants were transplanted to the soil inoculated with P. aphanidermatum zoospores, the B. stearothermophilus YC4194 maintained the high population density in rhizosphere soil upto 10$^{7}$ cfu/g until 15 days after treatment.

Biological Control of Pythium Damping-off of Bush Okra Using Rhizosphere Strains of Pseudomonas fluorescens

  • Abdelzaher, Hani M.A.;Imam, M.M.;Shoulkamy, M.A.;Gherbawy, Y.M.A.
    • Mycobiology
    • /
    • v.32 no.3
    • /
    • pp.139-147
    • /
    • 2004
  • A severe damping-off disease of bush okra caused by Pythium aphanidermatum, was diagnosed in plastic houses in Der Attia village, 15 km southwest of El-Minia city, Egypt, during the winter of 2001. Bush okra seedlings showed low emergence with bare patches inside the plastic houses. Seedlings that escaped pre-emergence damping-off showed poor growth, stunting and eventually collapsed. Examination of the infected tissues confirmed only Pythium aphanidermatum, showing its typical intercalary antheridia, and lobulate zoosporangia. P. aphanidermatum was shown to be pathogenic on bush okra under pot and field experiments. Bacteria making inhibition zones against the damping-off fungus P. aphanidermatum were selected. Agar discs from rhizosphere soil of bush okra containing colonies were transferred onto agar plate culture of P. aphanidermatum. After 2 days of incubation, colonies producing clear zones of non-Pythium growth were readily detected. The two bacteria with the largest inhibition zones were identified as Pseudomonas fluorescens. Bush okra emergence(%) in both pot and plastic houses experiments indicated that disease control could be obtained by applying P. fluorescens to the soil or coating the bacteria to the bush okra seeds before sowing. In the plastic houses, application of the bacteria onto Pythium-infested soil and sowing bush okra seeds dressed with bacteria gave 100% emergence. In addition, This was the first reported disease of bush okra by this oomycete in Egypt.

Symptomatology, Interacton and Management of Rhizome Rot of Ginger by Xenobiotics (생강 뿌리썩음증상의 병징학, 기생체간 상호작용 및 약제방제)

  • Doshi, Anil;Mathur, Sneh
    • Korean journal of applied entomology
    • /
    • v.26 no.4 s.73
    • /
    • pp.261-265
    • /
    • 1987
  • Three diffeerent types of symptoms were observed according to the pathogen associated with the rhizomes. The maximum rotting was observed in case when Pythium aphanidermatum was inoculated first followed by Fusarium solani. There was no interaction in case of root knot nematode Meloidogyne incognita and Pythium aphanidermatum. Average per cent germination of the rhizomes were increased significantly in each treatment and maximum in case of Alliette(.25%). The per cent pre & post drenching rotting was minimum in case of Alliette, Burgandy mixture, Dithane-M 45 and Difolatan. These fungicides also increase the yield of rhizome significantly.

  • PDF

Occurrence and Pathogenicity of Pythium Species Isolated from Leaf Blight Symptoms of Turgrasses at Golf Courses in Korea

  • Kim, Jin-Won;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.15 no.2
    • /
    • pp.112-118
    • /
    • 1999
  • Eleven species of Pythium were isolated from leaf blight symptoms on creeping bentgrass (Agrostis palustirs Huds.), Kentucky bluegrass (Poa pratenisis L.) and zoysiagrasses (Zoysia japonica Steud., and Z. matrella (L.) Merr.) planted on golf courses in Korea. Mycelial growth on potato carrot agar medium under various temperature conditions indicated that Pythium species obtained in this study could be divided into four groups based on their responses to temperature conditions. P. vanterpoolii was found to favor low temperature conditions with the optimum temperature of $25^{\circ}$, whereas P. aphanidermatum and P. myriotylum favored relatively high temperature conditions with the optimum temperature of $35^{\circ}$. Other species including P. arrhenomanes, P. catenulatum, P. graminicola, P. oligandrum, P. rostratum, P. torulosum, and P. ultimum were the intermediate group with the optimum temperature of 25~$35^{\circ}$. P. periplocum was similar to the intermediate group but the minimum temperature for its mycelial growth was $15^{\circ}$, which was approximately $5^{\circ}$ above that for the intermediate Pythium spp.group. In the pathogenicity tests conducted in the lab using potted plants, P. aphanidermatum, P.a arrhenomanes, P. catenulatum, P. graminicola, P. myriotylum, P. periplocum, P. rostratum, P. torulosum, P. ultimum, and P. vanterpoolii were found to be pathogenic to creeping bentgrass and Kentucky bluegrass. P. aphanidermatum, P. catenulatum, and P. graminicola were frequently isolated from leaf blight symptoms of creeping bentgrass and Kentucky bluegrass in golf courses during the warm and humid periods in July-August. On the other hand, P. vanterpoolii and P. torulosum were frequently isolated during the cool and humid periods in March-May, suggesting both species might be the major causes of leaf blight occurring in the spring time. Zoysiagrass was susceptible to P. arrhenomanes and the heterothallic Pythium sp. (Ht-F), showing stem and crown rot of turf-grasses at poorly drained areas under coool and humid or rainy conditions. P. oligandrum and the heterothallic Pythium sp. (Ht-L) isolated from creeping bentgrass were avirulent to all species of turfgrasses tested in this study.

  • PDF

Development of Antagonistic Microorganism for Biological Control of Pythium Blight of Turfgrass (잔디 피시움마름병(Pythium blight)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Do, Ki-Suk;Kim, Won-Kuk;Lee, Jae-Ho;Choi, Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • Pythium blight caused by Pythium spp. is one of major diseases in putting green of golf course. In this study, microorganisms which are anatgonistic to Pythium aphanidermatum, a pathogen of pythium blight, were selected primary through in vitro tests, dual culture method and triple layer agar diffusion method. In vivo test against pythium blight were conducted to select the best candidate biocontrol microorganism by pot experiment in a plastic house. Bacillus subtilis GB-0365 was finally selected as a biocontrol agent against pythium blight. Relative Performance Indies(RPI) was used as a criterion of selecting potential biocontrol agent. B. subtilis GB-0365 showed resistance to major synthetic agrochemicals used in golf course. Alternative application of synthetic agrochemicals and B. subtilis GB-0365 was most effective to successfully contol pythium blight. B. subtilis GB-0365 suppressed the development of pythium bight of bentgrass by 56.4% as compared to non-treated control and its disease control efficacy was 60.9% of a synthetic fungicide Oxapro(WP) efficacy. B. subtilis GB-0365 has a potential to be a biocontrol agent for control of pythium blight.

Pythium spp. Isolated from Turfgrasses at Golf Courses in Korea (우리나라 골프장 잔디에서 분리한 Pythium spp.)

  • Kim, Jin-Won;Park, Eun-Woo
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.276-290
    • /
    • 1997
  • Eleven species of Pythium were identified from 125 isolates collected from leaf blight lesions on creeping bentgrass (Agrostis palustris Huds.), Kentucky bluegrass (Poa pratensis L.), and zoysiagrasses (Zoysia japonica Steud., and Z. matrella (L.) Merr.) at 35 golf courses in Korea in $1990{\sim}1996$. The identified species included P. aphanidermatum, P. arrhenomanes, P. catenulatum, P. graminicola, P. myriotylum, P. oligandrum, P. periplocum, P. rostratum, P. torulosum, P. ultimum var. ultimum, and P. vanterpoolii. Mycological characteristics of sporangia, oogonia, antheridia, and oospores observed on the sucrose-asparagine bentgrass leaf culture medium were described for each species. Of the species, P. arrhenomanes, P. catenulatum, P. gmminicola, P. oligandrum, P. periplocum, P. rostratum, P. torulosum and P. vanterpoolii were reported for the first time in Korea. P. myriotylum, P. rostratum, P. torulosum and P. vanterpoolii showed characteristic colony patterns on the potato-carrot agar medium, which can be used as criteria for species identification of Pythium.

  • PDF

Biological control of Pythium blight of turfgrass in golf green by Trichoderma harzianum ABGC-95 (Trichoderma harzianum ABGC-95를 이용한 골프그린에 발생하는 Pythium 마름병의 생물적 방제)

  • 염주립
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.4
    • /
    • pp.223-234
    • /
    • 1999
  • Antibiotic activity of selected biocontrol agent Trichoderma harzianum ABGS-95 showed 59% to P. graminicola, 65% to P. aphanidermatum and 57% to Rhizoctonia solani compare to non-treated control. ABGC-95 showed resistant to major agrochemicals such as metalaxyl+mancozeb, etridiazole, propamocarb, toclofos methly, terbuconazole, pencycuron and flutolanil. The biocontrol agent T. harzianum ABGC-95 grew vigorously in low nutrient media and water agar. And sand mixture with wheat bran or mowing debris of zoysia grass also provided good growth of the organism. Application of sand mixture of Trichoderma spp. into aeration cores in golf showed most effective biocontrol of pythium blight. Top dressing application of T. harzianum ABGC-95 reached 83% control efficient while spray application of same biocontrol agent showed only 69% control. The biocontrol agent ABGC-95 successfully suppressed the population density of Pythium spp. in soil. The population density of total Pythium spp. in ABGC-95 treated soil was sustained almost same population at beginning(early May) up to end of August, while the population in untreated control plot was increased 5 times that of beginning and even 10 times in pathogen accumulated soil.

  • PDF

Evaluation of Fungicides for Dollar Spot Control on Creeping Bentgrass and Annual Bluegrass Putting Green (크리핑벤트그래스와 애뉴얼블루그래스 그린에서 동전마름병에 대한 살균제 효과 평가)

  • Popko, James;Ok, Chang-Ho;Jung, Geun-Hwa
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.161-164
    • /
    • 2010
  • Dollar spot, caused by Sclerotinia homoeocarpa F.T. Bennett, is the most economically important turfgrass disease on golf courses in North America due to its persistent nature. Fungicides, plant growth regulators, and other products were evaluated for preventative control of dollar spot and the secondary effects on brown patch and Pythium in a mixed stand of creeping bentgrass and annual bluegrass golf course putting green. Most fungicides provided excellent control of dollar spot throughout the trial but Rhapsody alone did not provide adequate control. Civitas applied alone and tank-mixed with Banner MAXX(R) and Daconil Ultrex(R) provided acceptable control throughout the study. No phytotoxicity was observed on any of the treatments applied but a darker green color and reduction in turfgrass growth was observed in a treatment with plant growth regulator, Trimmit. Treatments that contained Civitas and the Civitas Harmonizer also exhibited green pigmentation.

Paenibacillus elgii SD17 as a Biocontrol Agent Against Soil-borne Turf Diseases

  • Kim, Dal-Soo;Rae, Cheol-Yong;Chun, Sam-Jae;Kim, Do-Hyung;Choi, Sung-Won;Choi, Kee-Hyun
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.328-333
    • /
    • 2005
  • Paenibacillus elgii SD17 (KCTC $10016BP^T$=NBRC $100335^T$) was recently reported as a new species. Based on its inhibitory activity to Thanatephorus cucumeris AG1-1, strain SD17 was further evaluated for its potential as a biocontrol agent against soil-borne diseases of turf grasses in Korea. P. elgii SD17 showed a broad spectrum of antimicrobial activity in vitro test and suppressed development of turf grass diseases; Pythium blight caused by Pythium aphanidermatum and brown patch caused by T. cucumeris AG1-1 on creeping bentgrass (Agrostis palustris) in the growth chamber tests. Under a condition for massive culture in a 5,000 L fermenter, P. elgii SD17 reached $6.4{\times}10^8$ spores/ml that resulted in approximately $1.0{\times}10^7$ cfu/g when formulated into a granule formulation (GR) using the whole culture broth instead of water. Using the GR formulation, biocontrol activity of P. elgii SD17 was confirmed. In the growth chamber tests, the GR formulation was effective against brown patch and Pythium blight with similar level of disease severity compared to each of the standard fungicides at the application rates of 10 g/$m^2$ or above. In the field tests, compared to each untreated control, the GR formulation also effectively controlled Pythium blight, brown patch and large patch at all the application rates of 5, 10 and 20 g/$m^2$, respectively, without significant response by the application rates. However its performance was inferior to each of the standard chemical fungicides. Based on these results, we consider this GR formulation of P. elgii SD17 as an effective biocontol agent to suppress Pythium blight, brown patch and large patch of turf grasses in Korea.