• Title/Summary/Keyword: Pythium

Search Result 203, Processing Time 0.027 seconds

Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea

  • Nam, Bora;Choi, Young-Joon
    • Mycobiology
    • /
    • v.47 no.3
    • /
    • pp.261-272
    • /
    • 2019
  • Oomycetes are widely distributed in various environments, including desert and polar regions. Depending upon different habits and hosts, they have evolved with both saprophytic and pathogenic nutritional modes. Freshwater ecosystem is one of the most important habitats for members of oomycetes. Most studies on oomycete diversity, however, have been biased mostly towards terrestrial phytopathogenic species, rather than aquatic species, although their roles as saprophytes and parasites are essential for freshwater ecosystems. In this study, we isolated oomycete strains from soil sediment, algae, and decaying plant debris in freshwater streams of Korea. The strains were identified based on cultural and morphological characteristics, as well as molecular phylogenetic analyses of ITS rDNA, cox1, and cox2 mtDNA sequences. As a result, we discovered eight oomycete species previously unknown in Korea, namely Phytopythium chamaehyphon, Phytopythium litorale, Phytopythium vexans, Pythium diclinum, Pythium heterothallicum, Pythium inflatum, Pythium intermedium, and Pythium oopapillum. Diversity and ecology of freshwater oomycetes in Korea are poorly understood. This study could contribute to understand their distribution and ecological function in freshwater ecosystem.

Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers

  • Lee, Soon Jeong;Hwang, Mi Sook;Park, Myoung Ae;Baek, Jae Min;Ha, Dong-Soo;Lee, Jee Eun;Lee, Sang-Rae
    • ALGAE
    • /
    • v.30 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Pythium species (Pythiales, Oomycetes) are well known as the algal pathogen that causes red rot disease in Pyropia / Porphyra species (Bangiales, Rhodophyta). Accurate species identification of the pathogen is important to finding a scientific solution for the disease and to clarify the host-parasite relationship. In Korea, only Pythium porphyrae has been reported from Pyropia species, with identifications based on culture and genetic analysis of the nuclear internal transcribed spacer (ITS) region. Recent fungal DNA barcoding studies have shown the low taxonomic resolution of the ITS region and suggested the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as an alternative molecular marker to identify Pythium species. In this study, we applied an analysis of both the ITS and cox1 regions to clarify the taxonomic relationships of Korean Pythium species. From the results, the two closely related Pythium species (P. chondricola and P. porphyrae) showed the same ITS sequence, while the cox1 marker successfully discriminated P. chondricola from P. porphyrae. This is the first report of the presence of P. chondricola from the infected blade of Pyropia yezoensis in Asia. This finding of the algal pathogen provides important information for identifying and determining the distribution of Pythium species. Further studies are also needed to confirm whether P. chondricola and P. porphyrae are coexisting as algal pathogens of Pyropia species in Korea.

Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea

  • Lee, Soon Jeong;Jee, Bo Young;Son, Maeng-Hyun;Lee, Sang-Rae
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.155-160
    • /
    • 2017
  • Red rot disease has caused a major decline in Pyropia (Nori) crop production in Korea, Japan, and China. To date, only Pythium porphyrae (Pythiales, Oomycetes) has been reported as the pathogen causing red rot disease in Pyropia yezoensis (Rhodophyta, Bangiales). Recently, Pythium chondricola was isolated from the infected blades of Py. yezoensis during molecular analyses using the mitochondrial cox1 region. In this study, we evaluated the pathogenicity of P. chondricola as an algal pathogen of Py. yezoensis. Moreover, a new cox2 marker was developed with high specificity for Pythium species. Subsequent to re-inoculation, P. chondricola successfully infected Py. yezoensis blades, with the infected regions containing symptoms of red rot disease. A novel cox2 marker successfully isolated the cox2 region of Pythium species from the infected blades of Py. yezoensis collected from Pyropia aquaculture farms. cox2 sequences showed 100% identity with that of P. chondricola (KJ595354) and 98% similarity with that of P. porphyrae (KJ595377). The results of the pathogenicity test and molecular analysis confirm that P. chondricola is a new algal pathogen causing red rot disease in Pyropia species. Moreover, it could also suggest the presence of cryptic biodiversity among Korean Pythium species.

The gene repertoire of Pythium porphyrae (Oomycota) suggests an adapted plant pathogen tackling red algae

  • Badis, Yacine;Han, Jong Won;Klochkova, Tatyana A.;Gachon, Claire M.M.;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.133-144
    • /
    • 2020
  • Pythium porphyrae is responsible for devastating outbreaks in seaweed farms of Pyropia, the most valuable cultivated seaweed worldwide. While the genus Pythium contains many well studied pathogens, the genome of P. porphyrae has yet to be sequenced. Here we report the first available gene repertoire of P. porphyrae and a preliminary analysis of pathogenicity-related genes. Using ab initio detection strategies, similarity based and manual annotation, we found that the P. porphyrae gene repertoire is similar to classical phytopathogenic Pythium species. This includes the absence of expanded RxLR effector family and the detection of classical pathogenicity-related genes like crinklers, glycoside hydrolases, cellulose-binding elicitor lectin-like proteins and elicitins. We additionally compared this dataset to the proteomes of 8 selected Pythium species. While 34% of the predicted proteome appeared specific to P. porphyrae, we could not attribute specific enzymes to the degradation of red algal biomass. Conversely, we detected several cellulases and a cutinase conserved with plant-pathogenic Pythium species. Together with the recent report of P. porphyrae triggering disease symptoms on several plant species in lab-controlled conditions, our findings add weight to the hypothesis that P. porphyrae is a reformed plant pathogen.

Control of Soybean Sprout Rot Caused by Pythium deliense in Recirculated Production System

  • Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.19 no.6
    • /
    • pp.280-283
    • /
    • 2003
  • A soybean-sprout rot epidemic occurred in a mass production soybean sprout factory in 2000 and 2001 in Korea, which caused up to 20% production loss. Among the causal pathogenic bacteria and fungi, Pythium deliense was found to be the dominant pathogen of severe root and hypocotyls rot, particularly in recirculating water system. An average of 90% of the isolated fungi from the rotted sprout on potato dextrose agar were Pythium sp. The fungal density of Pythium in the sampled water was monitored in the recycled water system for 1 year using a selective medium (com meal agar with Pimaricin, 10 mg; Rifampicin, 10 mg; and Ampicillin, 100 mg per 1 liter). The drained water from the soybean-sprout cultivation always had a certain amount of fungus in it. The removal of Pythium from the recycling water system must be thorough, safe, and environment friendly. However, the pathogen in the water was easily found even after ozone and chlorine treatments, which were devised on the recycling system for the removal of microorganisms. 5-$\mu\textrm{m}$ pore size filter was applied and was able to successfully control the disease. As the sprout industry increasingly shifts into mass production, the demand for water will increase continuously. Recycling water for sprout production is eco-friendly. However, a process must be devised to be able to first decompose organic matters before Pythium zoospores are filtered.

A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota)

  • Diehl, Nora;Kim, Gwang Hoon;Zuccarello, Giuseppe C.
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • Geographic distributions of pathogens are affected by dynamic processes involving host susceptibility, availability and abundance. An oomycete, Pythium porphyrae, is the causative agent of red rot disease, which plagues Pyropia farms in Korea and Japan almost every year and causes serious economic damage. We isolated an oomycete pathogen infecting Pyropia plicata from a natural population in Wellington, New Zealand. The pathogen was identified as Pythium porphyrae using cytochrome oxidase subunit 1 and internal transcribed spacer of the rDNA cistron molecular markers. Susceptibility test showed that this Pythium from New Zealand was able to infect several different species and genera of Bangiales including Pyropia but is not able to infect their sporophytic (conchocelis) phases. The sequences of the isolated New Zealand strain were also identical to Pythium chondricola from Korea and the type strain from the Netherlands. Genetic species delimitation analyses found no support for separating P. porphyrae from P. chondricola, nor do we find morphological characters to distinguish them. We propose that Pythium chondricola be placed in synonymy with P. porphyrae. It appears that the pathogen of Pyropia, both in aquaculture in the northern hemisphere and in natural populations in the southern hemisphere is one species.

Studies on the Identification of Pythium spp. and Sclerotial Fungi isolated from Rice plants in Korea (II) (수도(水稻)에 관여(關與)하는 Pythium spp와 균핵병균류(菌核病菌類)의 분류동정(分類同定)에 관(關)한 연구(硏究)(II))

  • Lee, Young-Hee;Lee, Eung-Kwon;Kim, Byung-Soo
    • The Korean Journal of Mycology
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 1978
  • Four species of Pythium and two species of Sclerotium previously not recorded in Korea during 1976 and Leptosphaeria salvinii which previosly reported but reidentified. Pythium aristosporm Vantery, Pythium sp. and Pythium myriotylum Drechsler were isolated from diseased rice seedlings and from green withered rice plants and Pythium irreglare Buisman was isolated from paddy soil. Three species of Pythium except P. irregulare grew well at $40^{\circ}C$ on Potato dextrose agar and were confirmed as highly pathogenic but P. irregulare showed low pathogenicity on Yushin variety of rice. Sclerotium hydrophilum and Sclerotium oryzae-sativae appeared to be weakly pathogenic, but Leptosphaeria salvinii was confirmed as a highly pathogenic. Ordinally the two species of Sclerotium grew and produced many sclerotia on dead sheath and stems of rice. There are still some problems to clarify and reconsider in regard to the pathogenicity of the sclerotial fungi because their populations were so very high in paddy fields, but their role might be wound parasite.

  • PDF

Pythium spp. Isolated from Turfgrasses at Golf Courses in Korea (우리나라 골프장 잔디에서 분리한 Pythium spp.)

  • Kim, Jin-Won;Park, Eun-Woo
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.276-290
    • /
    • 1997
  • Eleven species of Pythium were identified from 125 isolates collected from leaf blight lesions on creeping bentgrass (Agrostis palustris Huds.), Kentucky bluegrass (Poa pratensis L.), and zoysiagrasses (Zoysia japonica Steud., and Z. matrella (L.) Merr.) at 35 golf courses in Korea in $1990{\sim}1996$. The identified species included P. aphanidermatum, P. arrhenomanes, P. catenulatum, P. graminicola, P. myriotylum, P. oligandrum, P. periplocum, P. rostratum, P. torulosum, P. ultimum var. ultimum, and P. vanterpoolii. Mycological characteristics of sporangia, oogonia, antheridia, and oospores observed on the sucrose-asparagine bentgrass leaf culture medium were described for each species. Of the species, P. arrhenomanes, P. catenulatum, P. gmminicola, P. oligandrum, P. periplocum, P. rostratum, P. torulosum and P. vanterpoolii were reported for the first time in Korea. P. myriotylum, P. rostratum, P. torulosum and P. vanterpoolii showed characteristic colony patterns on the potato-carrot agar medium, which can be used as criteria for species identification of Pythium.

  • PDF

Effects of Fungicidal Drenches on Damping-off Organisms in Ginseng Seed Bed and Yield of the Seedling Root (살균제의 토양관주에 따른 인삼모잘룩병균(자묘입고병균)의 숫적면화(수적변화) 및 묘삼뿌리의 수량)

  • Choi Hah Ja;Chung Hoo Sup
    • Korean journal of applied entomology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 1971
  • 1. The number of Rhizoctonia solani, Pythium debaryanum, Fusarium and Trichoderma was detected by the modification of Boosails special plating method when ginseng seed bed was drenched with Captan, Difolatan, Zineb, Maneb and PCNB at weekly intervals. Pythium debaryanum Hesse was described for the first time on Panax ginseng in Korea. 2. The number of Rhizoctonia solani and Pythium debaryanum was decreased gradually as the geason Progressed, whereas that of Fusarium and rrichcderma was increased. 3, The number of Rhixoctonia solani was greatly reduced by PCNB, and soils treated with other fungicides generally showed less Rhizoctonie solani than in the control. The number of Pythium debaryanum was significantly reduced by Zineb, Maneb, followed by Captan and Difolatan. None of the fungicids reduced the number of Fusarium colonies in the fourth week. Effects of the chemicals on Trichoderma were not statistically significant. 4. More fresh weight of the seedling roots was obtained using Difolatan, Maneb and PCNB. Phytotoxicity was noted with Maneb, Zineb and Captan after the third treatment.

  • PDF

Effects of Chemicals on Growth of Pythium zingiberum Causing Rhizome Rot of Ginger and Inhibition of the Disease Development (약제에 의한 Pythium zingiberum의 생장 및 생강 근경부패병 발병 억제효과)

  • 최인영;이왕휴;소인영
    • Korean Journal Plant Pathology
    • /
    • v.12 no.3
    • /
    • pp.331-335
    • /
    • 1996
  • 1993년 전북완주와 충남 서산 지역에서 생강 근경 부패병에 감염된 식물체로부터 Pythium sp.를 분리하였으며, 52균주를 형태적 특징과 병원성 검정을 통해 Pythium zingiberum으로 동정하였다. P. zingiberum으로 동정된 균주들이 재배지에서 사용되는 metalaxyl(MT), metalaxyl+copper oxychloride(MC), echlomezol(EM) 및 propamocarb hydrochloride(PC)등에 균사 생장, 난포자 형성에 미치는 영향 및 약제방제 효과 등을 검토하였다. MT, MC, EM 등이 혼합된 평판배지에서의 균사생육 정도는 50, 100 mg/L에서도 균사생장 억제를 나타냈으나 3균주는 EM 100mg/L에서도 균사생장이 저지되지 않았다. 100mg/L에서도 균사생육 억제효과가 적은 PC의 경우 저항성균주의 난포자 형성량은 약제 희석농도가 높아질수록 저하되었으나, 감수성을 나타낸 균주는 10, 50mg/L에서 오히려 증가하였다. 또한 폿트실험을 통한 약효검정 결과에서도 MT, MC, EM등은 대조구에 비해 생강 근경부패병을 억제하였다.

  • PDF