• Title/Summary/Keyword: Pythagoras number

Search Result 5, Processing Time 0.017 seconds

On integration of Pythagoras and Fibonacci numbers (피보나치 수를 활용한 피타고라스 수의 통합적 고찰)

  • Choi, Eunmi;Kim, Si Myung
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.151-164
    • /
    • 2015
  • The purpose of this paper is to develop a teaching and learning material integrated two subjects Pythagorean theorem and Fibonacci numbers. Traditionally the former subject belongs to geometry area and the latter is in algebra area. In this work we integrate these two issues and make a discovery method to generate infinitely many Pythagorean numbers by means of Fibonacci numbers. We have used this article as a teaching and learning material for a science high school and found that it is very appropriate for those students in advanced geometry and number theory courses.

Proof of the Pythagorean Theorem from the Viewpoint of the Mathematical History (수학사적 관점에서 본 피타고라스 정리의 증명)

  • Choi, Young-Gi;Lee, Ji-Hyun
    • School Mathematics
    • /
    • v.9 no.4
    • /
    • pp.523-533
    • /
    • 2007
  • This article focused the meaning of Pythagoras' and Euclid's proof about the Pythagorean theorem in a historical and mathematical perspective. Pythagoras' proof using similarity is based on the arithmetic assumption about commensurability. However, Euclid proved the Pythagorean theorem again only using the concept of dissection-rearrangement that is purely geometric so that it does not need commensurability. Pythagoras' and Euclid's different approaches to geometry have to do with Birkhoff's axiom system and Hilbert's axiom system in the school geometry Birkhoff proposed the new axioms for plane geometry accepting real number that is strictly defined. Thus Birkhoff's metrical approach can be defined as a Pythagorean approach that developed geometry based on number. On the other hand, Hilbert succeeded Euclid who had pursued pure geometry that did not depend on number. The difference between the proof using similarity and dissection-rearrangement is related to the unsolved problem in the geometry curriculum that is conflict of Euclid's conventional synthetical approach and modern mathematical approach to geometry.

  • PDF

An Inquiry into Convex Polygons which can be made by Seven Pieces of Square Seven-piece Puzzles (정사각형 칠교판의 일곱 조각으로 만들 수 있는 볼록 다각형의 탐색)

  • Park, Kyo-Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.221-232
    • /
    • 2007
  • In school mathematics, activities to make particular convex polygons by attaching edgewise some pieces of tangram are introduced. This paper focus on deepening these activities. In this paper, by using Pick's Theorem and 和 草's method, all the convex polygons by attaching edgewise seven pieces of tangram, Sei Shonagon(淸少納言)'s tangram, and Pythagoras puzzle are found out respectively. By using Pick's Theorem to the square seven-piece puzzles satisfying conditions of the length of edge, it is showed that the number of convex polygons by attaching edgewise seven pieces of them can not exceed 20. And same result is obtained by generalizing 和 草's method. The number of convex polygons by attaching edgewise seven pieces of tangram, Sei Shonagon's tangram, and Pythagoras puzzle are 13, 16, and 12 respectively.

  • PDF

A Study on the Pattern of Hair Design Expression in the Application of Geometrical Idea as a Means of Cognition (인식도구로서 기하학 관념의 적용에 따른 헤어디자인 표현유형 연구)

  • Lim, Mi-Ra
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.4 no.1 s.7
    • /
    • pp.28-34
    • /
    • 2006
  • The purpose of this study is to historically examine the thoughts and ideas of geometry and to analyze the expression style of design applied to the mass communication such as magazines and world wide webs, by giving definitions on the ideas of geometry and the pattern of cognition. Geometry was evolved to Descartes's analytical geometry, projective geometry, non-Euclidean geometry and Topology at the end of 19th century. When geometry applies to design styles, it is devided into two field, plane geometry and solid geometry. The development of geometry was completed from the Pythagoras symbolic theory of number to Platonic spiritual geometry and Euclidean geometry. It can be studied that those have what kind of symbolic meanings and transformations on each hair design plan. It can also analized how those symbolic forms are appeared on the design form. This tendency means that there is always a try for the use of geometry as reasonable device for hair design. If the hair design and geometry have logical and artistical relation, we can make buildings which have a order, balance and harmony.

  • PDF

The geometry of Sulbasu${\={u}}$tras in Ancient India (고대 인도와 술바수트라스 기하학)

  • Kim, Jong-Myung;Heo, Hae-Ja
    • Journal for History of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.15-29
    • /
    • 2011
  • This study was carrying out research on the geometry of Sulbas${\={u}}$tras as parts of looking for historical roots of oriental mathematics, The Sulbas${\={u}}$tras(rope's rules), a collection of Hindu religious documents, was written between Vedic period(BC 1500~600). The geometry of Sulbas${\={u}}$tras in ancient India was studied to construct or design for sacrificial rite and fire altars. The Sulbas${\={u}}$tras contains not only geometrical contents such as simple statement of plane figures, geometrical constructions for combination and transformation of areas, but also algebraic contents such as Pythagoras theorem and Pythagorean triples, irrational number, simultaneous indeterminate equation and so on. This paper examined the key features of the geometry of Sulbas${\={u}}$tras and the geometry of Sulbas${\={u}}$tras for the construction of the sacrificial rite and the fire altars. Also, in this study we compared geometry developments in ancient India with one of the other ancient civilizations.