• 제목/요약/키워드: Pyruvate

검색결과 635건 처리시간 0.026초

국내 주요 산지별 마늘의 영양성분 비교 (Physicochemical Characteristics of Garlic (Allium sativum L.) on Collected from the Different Regions)

  • 신정혜;이수정;정우재;강민정;성낙주
    • 농업생명과학연구
    • /
    • 제45권2호
    • /
    • pp.103-114
    • /
    • 2011
  • 국내 주요 산지별 마늘의 영양성분에 대한 기초 자료를 확보하고자 국내 한지형 마늘 재배지인 태안, 의성, 서산과 난지형 재배지인 제주, 남해, 함평, 무안, 합천에서 재배된 마늘 및 중국산 마늘의 영양성분을 비교분석하였다. 중국산 마늘의 수분함량은 $71.53{\pm}0.34%$으로, 국내산 마늘 $59.37{\pm}0.63$-$66.96{\pm}0.72%$에 비하여 5% 수준에서 유의적으로 높았다. 국내산 마늘의 총 페놀 함량은 $12.69{\pm}0.18$-$22.02{\pm}0.27mg/100g$, flavonoids 함량은 $2.91{\pm}0.13$-$5.96{\pm}0.23mg/100g$의 범위였다. 총 티오설피네이트 함량은 $96.28{\pm}2.55$-$150.81{\pm}0.09mg/100g$ 의 범위였으며, 총 피루베이트 함량은 $132.87{\pm}0.45$- $161.37{\pm}1.58mg/100g$의 범위였다. 유리당은 sucrose, glucose 및 fructose가 검출되었으며, 산지 따라 sucrose의 함량은 약 2-4배까지 차이가 있었고, fructose는 남해산이 타 지역산에 비하여 5% 수준에서 유의적으로 높은 함량이었다. 유기산은 8종, 무기물 총 11종, 구성아미노산은 총 17종이 검출되었으며, 마늘의 산지에 따라 함량 및 검출된 성분에는 차이가 있었다. 모든 시료에 함유되어 있는 유리아미노산은 proline, alanine, tyrosine, phenylalanine 및 arginine으로 총 5종 이었다.

대사공학에 의해 개발된 코리네박테리움 글루타미컴에 의한 4-히드록시벤질 알코올 생산 (Production of 4-Hydroxybenzyl Alcohol Using Metabolically Engineered Corynebacterium glutamicum)

  • 김부연;정혜빈;이지영;페러 레니;푸완토 헨리 슈쿠르;이진호
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.506-514
    • /
    • 2020
  • 4-Hydroxybenzyl alcohol (4-HB alcohol)은 두통, 경련 행동, 현기증과 같은 신경계 질환에 유익한 효과를 나타내며 천마의 주요 생리활성 성분 중의 하나이다. 대사공학을 통해 4-hydroxybenzoate (4-HBA)를 생산하는 균주로부터 4-HB alcohol을 생산하는 재조합 Corynebacterium glutamicum을 개발하였다. 먼저 4-HBA를 생산하는 APS809로부터 염색체 내 NCgl2922 유전자에 Methanocaldococcus jannaschii 유래의 aroK 유전자를 삽입한 APS963을 개발하였다. 4-HBA의 카로복실 산을 4-hydroxybenzaldehyde (4-HB aldehyde)로의 환원을 촉매하는 Nocardia iowensis 유래의 car 유전자를 염색체에서 발현하는 균주를 개발하기 위해 NCgl1112 유전자 일부 단편에 car 유전자가 삽입된 GAS177를 개발하였다. 더 높은 농도의 4-HB alcohol을 생산하기 위해 4-HB alcohol을 aldehyde로 산화를 촉매하는데 관여하는 creG 유전자를 염색체상에서 제거된 GAS255를 개발하였다. 최종적으로 chorismate를 4-HBA로 전환하는 효소의 유전자 ubiCpr을 pcaHG에 삽입된 GAS355를 개발하였으며, 80 g/l 포도당을 함유한 삼각플라스크에서 발효하여 생산성을 평가한 결과, 2.3 g/l 4-HB alcohol이 생산되었으며 부산물로 0.32 g/l 4-HBA, 0.3 g/l 4-HB aldehyde가 축적되었다.

Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice

  • Kim, Jisu;Beak, Suji;Ahn, Sanghyun;Moon, Byung Seok;Kim, Bom Sahn;Lee, Sang Ju;Oh, Seung Jun;Park, Hun-Young;Kwon, Seung Hae;Shin, Chul Ho;Lim, Kiwon;Lee, Kang Pa
    • Nutrition Research and Practice
    • /
    • 제16권1호
    • /
    • pp.33-45
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Ginseng extract (GSE) and taurine (TR) are widely used antifatigue resources in functional foods. However, the mechanism underlying the antifatigue effects of GSE and TR are still unclear. Hence, we investigated whether GSE and TR have synergistic effects against fatigue in mice. MATERIALS/METHODS: L6 cells were treated with different concentrations of TR and GSE, and cell viability was determined using 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium. Oxidative stress was analyzed by immunocytochemistry using MitoTrackerTM Red FM and an anti-8-oxoguanine antibody. Respiratory gas analysis was performed to investigate metabolism. Expression of an activated protein kinase was analyzed using immunohistochemistry. Gene expression of cluster of differentiation 36 and pyruvate dehydrogenase lipoamide kinase isozyme 4 was measured using reverse transcription-polymerase chain reaction. Mice were orally administered TR, GSE, or their combination for 30 days, and then fatigue-related parameters, including lactate, blood urea nitrogen, and glycogen, were measured after forced swimming. RESULTS: TR and GSE reduced oxidative stress levels in hydrogen peroxide-stimulated L6 cells and enhanced the oxygen uptake and lipid metabolism in mice after acute exercise. After oral administration of TR or GSE for 30 days, the fatigue-related parameters did not change in mice. However, the mice administered GSE (400 mg/kg/day) alone for 30 days could swim longer than those from the other groups. Further, no synergistic effect was observed after the swimming exercise in mice treated with the TR and GSE combination for 30 days. CONCLUSIONS: Taken together, our data suggest that TR and GSE may exert antifatigue effects in mice after acute exercise by enhancing oxygen uptake and lipid oxidation.

고지방식이 마우스의 간에서 Lactobacillus acidophilus NS1에 의한 글리코겐 함량 조절 효과 (Effect of Lactobacillus acidophilus NS1 on the Hepatic Glycogen Contents in High-Fat Diet-Fed Mice)

  • 양가람;김소영;김응석
    • Journal of Dairy Science and Biotechnology
    • /
    • 제39권2호
    • /
    • pp.78-85
    • /
    • 2021
  • 본 연구는 고지방식이 마우스에서 체중 감소, 혈당 감소 및 인슐린 저항성 개선 효과를 가지는 LNS1 균주의 간 내 글리코겐 함량에 미치는 영향을 조사하여 고지방식이에 의한 비정상적인 글리코겐 대사 개선을 위한 활용 가능성을 검토하고자 실시하였다. LNS1을 12주간 경구 투여한 고지방식이 마우스의 간에서 포도당 운반체 단백질인 GLUT2와 글리코겐 합성의 주요 효소인 GCK, GYS2의 유전자 발현 변화를 확인한 결과, LNS1의 경구 투여는 고지방식이 마우스에 비해 GLUT2와 GYS2의 유전자 발현을 각각 약 2배, 1.8배 증가시켰으며, GCK의 발현에는 영향을 주지 않는 것으로 확인되었다. 또한, GCK의 regulatory unit으로 작용하여 GCK의 활성을 억제하는 GCKR와 글리코겐 분해 과정의 주요 효소인 G6PC의 발현은 LNS1 투여에 의해 HFD마우스에 비해 각각 약 53%, 32% 감소함을 보였다. 간 조직에서의 결과와 마찬가지로 HepG2 세포에 LNS1-CM의 처리는 GLUT2와 GYS2의 유전자 발현을 약 1.9배, 2배 증가시켰으며, GCK의 발현 변화에는 영향을 주지 않는 것으로 확인되었다. GCKR과 G6PC의 유전자 발현 또한 LNS1-CM 처리에 의해 각각 77%, 47% 감소함을 보였다. 또한, 간 조직 내 글리코겐 함량은 고지방식이와 LNS1 투여를 병행한 마우스에서 고지방식이 마우스에 비해 약 1.5배 증가한 것으로 조사되었다. 위의 결과들을 종합해 볼 때, LNS1은 GLUT2, GYS2, GCKR와 G6PC의 발현 조절을 통해 간 조직내 글리코겐 함량을 증가시켜 고지방식이에 의한 글리코겐 대사 이상을 개선시키는 효과를 가지는 것으로 사료된다.

Exploring differentially expressed genes related to metabolism by RNA-Seq in porcine embryonic fibroblast after insulin treatment

  • Yingjuan, Liang;Jinpeng, Wang;Xinyu, Li;Shuang, Wu;Chaoqian, Jiang;Yue, Wang;Xuechun, Li;Zhong-Hua, Liu;Yanshuang, Mu
    • Journal of Veterinary Science
    • /
    • 제23권6호
    • /
    • pp.90.01-90.13
    • /
    • 2022
  • Background: Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin. Objectives: The goal of our research was to see how insulin affected glucose and lipid metabolism in PEFs. Methods: We cultured the PEFs with the addition of insulin and sampled them at 0, 48, and 72 h for RNA-Seq analysis in triplicate for each time point. Results: At 48 and 72 h, 801 and 1,176 genes were differentially expressed, respectively. Of these, 272 up-regulated genes and 264 down-regulated genes were common to both time points. Gene Ontology analysis was used to annotate the functions of the differentially expressed genes (DEGs), the biological processes related to lipid metabolism and cell cycle were dominant. And the DEGs were significantly enriched in interleukin-17 signaling pathway, phosphatidylinositol-3-kinase-protein kinase B signaling pathway, pyruvate metabolism, and others pathways related to lipid metabolism by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Conclusions: These results elucidate the transcriptomic response to insulin in PEF. The genes and pathways involved in the transcriptome mechanisms provide useful information for further research into the complicated molecular processes of insulin in PEF.

누에와 육계 복합 추출물의 in vivo 면역증진 기능성 연구 (Evaluation on Immunopotentiation Activities of Combined Extract of Silkworm and Cinnamomum cassia in vivo)

  • 김경조;박해진;김일규;김민주;신미래;노성수
    • 대한본초학회지
    • /
    • 제33권4호
    • /
    • pp.19-26
    • /
    • 2018
  • Objectives : The aim of this study was to investigate the immunopotentiating activity of combine extract that Silkworm and Cinnamomum cassia. Recently, acute epidemic diseases such as cold and viral respiratory diseases have been emerging. So, interested in immunity enhancement has been increasing, and research on natural products to promote immunity activity has been actively conducted. Methods : To confirm the immunopotentiating activity effect, Silkworm (SW), Cinnamomum cassia (CC), and SWCC combined extracts were treated 14 days at 300 mg/kg/day. The changes of glutamic oxalacetic transaminase (GOT), glutamic pyruvate transaminase (GPT) in serum were analyzed after experiment. The changes in the total spleen cell number were measured. Immune cells in spleen were analyzed using fluorescence activated cell sorter (FACS). also, analyzed the expression of cytokines in spleen. Results : Total number of cells in the spleen and FACS analysis of T lymphocytes activated in the spleen showed that the SWCC combined treated group had much higher frequency of active cells than both single groups. The ratio of CD4+CD8+, CD4+CD69+ and CD4+CD25+ T cells in spleen, SWCC is higher than other groups except Nor in CD4+, CD4+CD69+, CD4+CD25+ T cells. The results of this study suggest that SWCC can help immune function via IL-2, IL-10, IL-12, IFN-${\gamma}$ cytokine production, increased T lymphocytes and splenocyte proliferation. Conclusion : Therefore, these results suggested that the SWCC combined extracts administration increase stronger immunity enhancement than when SW and CC adminstration.

Translocalization of enhanced PKM2 protein into the nucleus induced by cancer upregulated gene 2 confers cancer stem cell-like phenotypes

  • Yawut, Natpaphan;Kaowinn, Sirichat;Cho, Il-Rae;Budluang, Phatcharaporn;Kim, Seonghye;Kim, Suhkmann;Youn, So Eun;Koh, Sang Seok;Chung, Young-Hwa
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.98-103
    • /
    • 2022
  • Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Expression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound healing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator.

백출(白朮)의 항산화 효과가 DSS 유발 궤양성 대장염 모델에 미치는 영향 (Antioxidant Effect of Atractylodes macrocephala Koidzumi in DSS-induced Ulcerative Colitis Model)

  • 박석만;이세희;정다운;조수정;신미래;박해진;노성수
    • 대한본초학회지
    • /
    • 제37권1호
    • /
    • pp.19-29
    • /
    • 2022
  • Objectives : Although the pharmacological effects of anti-inflammatory and antioxidant action of Atractylodes macrocephala Koidzumi water extract (AM) have been proven from many studies, reports on the antioxidant effect of AM on ulcerative colitis (UC) are scarce. Therefore, we aimed at evaluating the anti-oxidant effect of AM on the DSS-induced UC model. Methods : To induce ulcerative colitis, 8-week-old male Balb/c mice received 5% DSS in drinking water for 1 week. After 1 week of adaptation, mice were divided into four groups (n=8 each) for use as normal (Normal), DSS Control (Control), DSS + AM 100 mg/kg (AM100)-treatment, DSS + AM 200 mg/kg (AM200)-treatment. After 1 week of the experiment, the animals were sacrificed, and the extracted colon tissue was analyzed for protein through western blot. Results : As a result of confirming the macroscopic changes in colon tissues to confirm the therapeutic effects of AM, the decrease in colon length was suppressed in the AM treatment group compared to the control group. In addition, as a result of biochemical analysis, AM administration significantly reduced serum glutamic oxalacetic transaminase, glutamic pyruvate transaminase levels and tissue malondialdehyde levels. As a result of confirming the protein expression level through western blot, AM administration significantly decreased the expression of NADPH-related proteins such as NOX2, p22phox, and iNOS, but significantly increased the expression of SOD, catalase, and GPx-1/2. Conclusions : AM may improve DSS-induced UC in mice by modulating NADPH and antioxidant-related proteins. In conclusion, AM showed an antioxidant effect through the improvement of oxidative stress on UC.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Amino Acids Supplemented with Culture Medium Stimulated On Development of Porcine Embryos

  • Lee, Y.S.;S.H. Song;Lee, S.N.;K.H. Chung;Park, C.S.
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.80-80
    • /
    • 2002
  • This study was carried out that to investigate the effects of amino acids supplemented with culture medium on development of porcine embryos cultured in vitro. Cumulus oocyte complexes (COCs) were cultured in the maturation medium containing hormones (0.5$\mu\textrm{g}$/$m\ell$ LH, 0.5$\mu\textrm{g}$/$m\ell$ FSH and 1$\mu\textrm{g}$/$m\ell$ estradiol-17${\beta}$) for 20-22 h at 39$^{\circ}C$ in an atmosphere of 5% CO$_2$in air. Subsequently, COCs were cultured in hormone-free maturation medium for 20-22 h. After maturation for 40-44h, oocytes were removed cumulus cells by pipetting and cultured with epididymal sperm for 5 h in the mTBM. Embryos obtained were divided in 4 groups (1) cultured in NCSU 23 containing 0.4% BSA to blastocyst stage(Control), (2) essential amino acids (EA), (3) non-essential amino acids (NA), (4) mixture of essential and non essential amino acid (EA+NA). All treated groups(2-4) were used a glucose free NCSU 23 medium supplemented with pyruvate (0.33 mM), lactate (4.5 mM) to morula stage. From morula to blastocyst stage embryos of all treated groups were cultured in NCSU 23 containing 0.4% BSA. The rates of cleaved oocytes at 48 h after IVF were from 82% to 88% in the groups of control, EA, NA and EA+NA, respectively. The in vitro developmental rates into blastocysts in the groups of EA and EA+NA were significantly (P<0.05) higher than those of group of control (35.1, 35.4 vs. 19.4%, respectively), however, no significant (P<0.05) between control and NA. In conclusion, supplemented with essential amino acid or mixture of essential and non essential amino acid in the culture medium at morula stage increased the rate of development to blastocyst on in vitro produced porcine embryos.

  • PDF