• 제목/요약/키워드: Pyrophyllite

Search Result 116, Processing Time 0.028 seconds

Sandstone Diagenesis of the Lower Permian Jangseong Formation, Jangseong Area, Samcheog Coalfield (삼척탄전 장성일대에 분포하는 하부페름기 장성층 사암의 속성작용)

  • 박현미;유인창;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.132-145
    • /
    • 1998
  • The coal-bearing siliciclastic rocks of the Lower Permian Jangseong Formation, Samcheog coalfield, represent a megacyclothem which shows cyclic repetitions of sandstone, shale, coaly shale, and coals. Petrographic, geochemical, and SEM studies for sandstone samples, and XRD analysis for clay minerals were carried out to understand diagenesis in the sandstones of the Jangseong Formation. The Jangseong sandstones are composed of 60% quartz (mainly monocrystalline quartz) and 36% clay matrix and cement with minor amounts of feldspar, lithic fragments and accessory minerals (less than 4%). Jangseong sandstones are classified mostly as quartzwackes and partly as lithic graywackes according to the scheme of Dott(1964). The textural relationships between authigenic minerals and cements in thin sections and SEM photomicrographs suggest the paragenetic sequence as follows; (1) mechanical compaction, (2) cementation by quartz overgrowth, (3) formation of authigenic clay minerals (illite, kaolinite), (4) dissolution of framework grains and development of secondary porosity, and (5) later-stage pore-filling by pyrophyllite. We propose that these diagenetic processes might be due to organic-inorganic interaction between the dominant framework grains and the formation water. The Al, Si ions and organic acid, derived from dewatering of interbedded organic-rich shale and coals, were transported into the Jangseong sandstones. This caused changes in the chemistry of the formation water of the sandstones, and resulted in overgrowth of quartz and precipitation of authigenic clay minerals of kaolinite and illite. The secondary pores, produced during dissolution of clay and framework grains by organic acid and $CO_2$ gas, were conduit for silica-rich solution into the Jangseong sandstones and the influx of silica-rich solution produced the late-stage pyrophyllite after the expanse of kaolinite. The origin of the solution that formed pyrophyllite is not likely to be the organic-rich formation water based on the observation of fracture-filling pyrophyllite in the Jangseong sandstones, but the process of pyrophyllite pore-filling was indirectly related to organic-inorganic interaction.

  • PDF

Neutralization of Pyrophyllite Mine Wastes by the Lime Cake By-Product (부산석회를 이용한 납석광산 폐석의 중화처리)

  • Yoo, Kyung-Yoal;Cheong, Young-Wook;Ok, Yong-Sik;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • Numerous abandoned or closed mines are present in the steep mountain valleys in Korea due to the depression of the mining industry since the late 1980s. From the mines, enormous amounts of wastes were dumped on the slopes causing sedimentation and acid mine drainage to be discharged directly into streams causing detrimental effects on surrounding environment. Objective of this research was to evaluate the feasibility of the lime cake by-product from the soda ash production (Solvay process) to neutralize the pyrophyllite mine wastes, which have discharged the acid drainage to soil and stream in the watershed. The pH of mine wastes was strongly acidic at pH 3.67 containing over 16% of $Al_2O_3$ and 11% of $Fe_2O_3$. Whereas the lime cake by-product was strongly basic at pH 9.97 due to high contents of CaO, MgO and $CaCl_2$ as major components. Column experiments were conducted to test the neutralizing capacity of the lime cake by-product for the acidic pyrophyllite mine wastes. The column packed with the wastes (control) was treated with the lime cake by-product, calcium carbonate, the dressing soil or combination. The distilled water was eluted statically through the column and the leachate was collected for the chemical analyses. Treatments of the mine wastes with the lime cake by-product (or calcium carbonate) as mixtures increased pH of the leachate from $3.5{\sim}4.0\;to\;7{\sim}8$. Concentrations of Fe and Al in the leachate were also decreased below 1.0 mg $L^{-1}$. A Similar result was observed at the combined treatments of the mine waste, the lime by-product (or calcium carbonate) and the dressing soil. The results indicated that the lime cake by-product could sufficiently neutralize the acid drainage from the pyrophyllite mine wastes without dressing soils.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Grinding Kinetics of Calcite, Pyrophyllite and Talc During Stirred Ball Milling - Consideration of Selection Function (교반 볼밀에 의한 방해석, 납석, 활석의 분쇄 시 분쇄속도론에 관한 연구 - 선택함수의 고찰)

  • Choi, Hee-Kyu;Kim, Seong-Soo;Hwang, Jin-Yeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.135-145
    • /
    • 2007
  • The needs for the ultra fine particles have been increased in preparation field of raw powders such as fine ceramics and high functional products. In this study, a series of wet grinding experiments were carried out on inorganic powders such as calcite, pyrophyllite and talc by a stirred ball mill. The particle size distribution of ground products of each test material fur a given grinding time was found to be expressed by the grinding rate (selection function) which was obtained from the grinding kinetics analysis. The median diameter decreased from 6.49 to $0.47{\mu}m$ in calcite, and decreased from 3.91 to $1.14{\mu}m$ in pyrophyllite. However, in talc, median diameter was decreased a little bit from 10.30 to $6.67{\mu}m$. The grinding rate changing on calcite and pyriphyllite were similar at the same conditions. However, in the case of talc, it was observed that the grinding rate was not increased compared to other samples.

Crystallizations of Fluoro-Phlogopite (불소운모의 결정화)

  • 송경근;오근호;이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.109-114
    • /
    • 1982
  • Fluoro-phlogopite crystals (Mica) were synthesized by two different methods; firstly the crystal was crystallized from the melts, and secondly mica crystalline was obtained from the direct solid state reaction. Addition of $CaF_2$ in the mica batch revealed the lowering the solid state reaction temperature. SEM and XRD were employed to observe mica crystalline flakes and solid solution forms. As a starting raw material Pyrophyllite was used resulting in the formation of mica crystals.

  • PDF

Fabrication of Multicrystalline Machinable Ceramics (다결정상 Machinable Ceramics의 제조)

  • 김재국;양삼열;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.793-802
    • /
    • 1991
  • The multicrystalline machinable ceramics was fabricated by melting method using domestic pyrophyllite. After determination of optimum crystallization temperature and time from results of DTA, XRD and SEM, base glasses were heat treated by 2-step schedule. Main crystalline phases identified by XRD, EDX were Na-fluorophlogopite, ${\beta}$-spoduemen and ${\alpha}$-cordierite, and the crystallization condition of these crystals was varied with chemical composition, thermal history and nucleation agents. The thermal, chemical properties of prepared samples were excellent.

  • PDF

Fabrication of Low TEC Machinable Ceramics using Domestic Pyrophillite (국내산 납석을 이용한 저팽창성 Machinable Ceramics의 제조)

  • 김재국;양삼열;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.730-738
    • /
    • 1991
  • Machinable ceramics containing ${\beta}$-spodumene crystal was fabricated by melting method using domestic pyrophyllite. Raw materials were batched by molar ratio of 8:2, 7:3, 6:4, and 5:5 for fluorophlogopite and ${\beta}$-spodumene. These compounds were melted at 1450$^{\circ}C$ for 1 hr and formed in graphite mold. Base glasses were heat-treated according to 2-step schedule which was determined from DTA, XRD analysis and SEM observation. Fabricated machinable ceramics have excellent themal, chemical properties and machinability.

  • PDF

K-Ar Ages of Alunite and Sericite in Altered Rocks, and Volcanic Rocks around the Haenam Area, Southwest Korea (해남지역(海南地域) 화산암류(火山岩類)와 납석 및 고령토 광상(鑛床)의 K-Ar 연대(年代))

  • Moon, Hi-Soo;Kim, Young Hee;Kim, Jong Hwan;You, Jang Han
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.135-141
    • /
    • 1990
  • A number of alunite and pyrophyllite deposits occur around the Haenam area where Cretaceous volcanic and volcanogenic sediments are widely distributed. The K-Ar ages of alunite, sericite and whole rocks collected from alunite and pyrophyllite deposits and unaltered rocks representing various stratigraphic horizon of the area were determined and their formation stage was discussed. The ages of volcanic rocks range between $68.6{\pm}1.9$ and $94.1{\pm}2.0$ Ma corresponding to Cenomanian-Maastrichtian of upper Cretaceous. Andesitic rock gives $94.1{\pm}2.0$. Rhyolite and acidic tuffs give $79.47{\pm}1.7$ and $82.8{\pm}1.2$ Ma corresponding to Campanian. The later stage andesite gives $68.6{\pm}1.9$ Ma of Maastrichtian. The results suggest that volcanism of the area can be devided into three different stages. The ages of alunite and sericite range $71.8{\pm}2.8$ to $76.6{\pm}2.9$ Ma of late Campanian to early Maastrichtian which is rather earlier than the age of granite(67 Ma). It indicates that the alteration ages of these clay mineral deposits appeared to be related with its volcanism rather than the hydrothermal stage of granite of this area.

  • PDF

Selection and Technical Development for Seed Pelleting Material of Codonopsis lanceolata Trautv (더덕 종자의 펠렛팅을 위한 소재 탐색 및 기술개발)

  • Choi, Kyeong-Gu;Lee, Youn-Su;Cha, Kwang-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.3
    • /
    • pp.130-133
    • /
    • 2006
  • This study was conducted to select Codonopsis lanceolata seed's new pelleting particulate materials and adhesives. Different adhesives (Polyvinyl alcohol (PVA), Carboxymethyl cellulose (CMC), Polyvinyl pyrrolidone (PVP), Xanthan gum (XG), Arabic gum (AG)) and particulate materials (Illite, Diatomite, Pyrophyllite + Illite + Diatomite (PID), Pyrophyllite + Illite + Talc (PIT), Bentonite + Talc (BT)) were tested for seed pelleting. PID for Codonopsis lanceolata seed pelleting appeared to be the best particulate material. Among the pelleting adhesives, PVP was the best adhesive for seed pelleting, and the optimum concentration for germination of pelleting seed was 1 %. Germination rate of the pelleted seeds treated with PID particulate material and PVP adhesive was higher (86.8%) than those of raw seeds (85.5%). $T_{50}$ and MDG of pelleted Codonopsis lanceolata seed required five and eight days at soil moisture content of 50%, respectively.

A Study on Effect of Inorganic Fillers to Rubber Properties (고무물성(物性)에 미치는 국산(國産) 무기충전제(無機充塡劑)의 효과(效果)에 관(關)한 연구(硏究))

  • Kim, Ki-Joo;Kim, Jong-Seok;Ahn, Byung-Kook;Suh, Soo-Kyo;Chang, Young-Jae;Kang, Kyoung-Ho
    • Elastomers and Composites
    • /
    • v.24 no.4
    • /
    • pp.276-289
    • /
    • 1989
  • This study deals with both effects of inorganic fillers to vulcanized rubbers such as NR, CR, EPDM, NBR & SBR and inorganic characteristics of domestic fillers in comparision with hard clay produced in the USA. The results were as follows. 1. Main ingredient of domestic clay "Ha-dong clay" was Halloysite, "No-ha Island" was Pyrophyllite with $\alpha$-Quartz, and both of "Hard clay" & "Hwa-soon clay" were proved to be Kaolinite by XRD, DT-TGA and chemical analysis by XRF. 2. Tensile strength value of SBR compounded with these fillers, was Hard clay $146kg\;f/cm^2$, Kaolinite $123kg\;f/cm^2$, Pyrophyllite $82kg\;f/cm^2$, Halloysite $80kg\;f/cm^2$, precipitated $CaCO_3\;27kg\;f/cm^2$, and ground $CaCO_3$ was $21kg\;f/cm^2$. These results showed the increase of seven times according to filler species. 3. The physical properties of non-crystalline rubbers, such as SBR, NBR & EPDM, compared with NR & CR, have been considerably changed according to crystalline phase, particle size, shape and surface structure of fillers. Especially, tensile strength value in case of SBR & EPDM, was differentiated about 1.5 times by the particle size of fillers. 4. In SBR, physical properties of rubber compounded with Kaolinite which was surface treated with fatty acid and silane, almost approach to the value of hard clay. 5. Delayed cure time of Kaolinite and decrease of rubber properties by $CaCO_3$ can be improved by blending kaolinite & $CaCO_3$ in the ratio of 2:1.

  • PDF