• Title/Summary/Keyword: Pyrophyllite

Search Result 116, Processing Time 0.025 seconds

Mechanical Properties of $\beta$-Sialon Ceramics Prepared from Wando Pyrophyllite and an Alkoxide (완도납석과 알콕사이드로부터 제조된 $\beta$-Sialon 세라믹스의 기계적 성질)

  • 이홍림;손연하;임헌진
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.390-398
    • /
    • 1991
  • $\beta$-Sialon powder was prepared from Wando pyrophyllite by the carbothermic reduction and nitridation at 135$0^{\circ}C$ for 10 h nitrogen atmosphere. Amorphous silica prepared from Si(OC2H5)4 was added to Wando pyrophyllite powder in order to control the final Z value. Two different methods were applied for synthesis of $\beta$-sialon powders. In Process A, the amorphous silica prepared from Si(OC2H5)4 was admixed to Wando pyrophyllite powder. Process B was started from the mixture of Wando Y2O3 was added to the synthesized $\beta$-Sialon powders as a sintering aid, and the mixed powders were hot pressed at 175$0^{\circ}C$ for 120 min in nitrogen atmosphere under 30 MPa. Their mechanical properties were compared. The maximum values of M.O.R., hardness and KIC were 667 MPa, 16 GPa and 6.3 MN/m3/2, respectively, and they are the values obtained form $\beta$-Sialon ceramics prepared by process A of Z=0.5.

  • PDF

Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals

  • Kim, Yong-Hyeon;Shin, Pyung-Woo;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.557-562
    • /
    • 2016
  • Pyrophyllite granule powders for thermal spray coating were successfully prepared through spray drying process. To produce a stable slurry, commercial pyrophyllite powder of $45{\mu}m$ in size was ball-milled for reduction of the size to $2{\sim}3{\mu}m$ and a dispersant was added to control the viscosity. Dense and spherical granules (average granule size : $59{\mu}m$) were prepared under conditions of 12,500 rpm for rotation velocity of the atomizer and 100 cps for slurry viscosity. The granules were then heat treated at $1,200^{\circ}C$ for proper handling strength and flow properties. The final granules had an apparent density of $0.725g/cm^3$ and a flow rate of 2.5 g/sec, which represent excellent properties to be used as the granule powder for thermal spray coatings.

Wall Rock Alteration of the Haenam Pyrophyllite Deposit Related to Felsic Volcanism, Southern Korea (전남 해남지역 해남 납석광상의 변질작용 및 생성환경)

  • Moon, Hi-Soo;Jeong, Seung Woo;Song, Yungoo;Park, Young Surk
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.83-96
    • /
    • 1991
  • Haenam pyrophyllite deposit occurred in the rhyolitic tuff of late Cretaceous age is located in the northern part of Haenam-gun, Jeonranam-do. The ore of the Haenam deposit is predominantly composed of pyrophyllite and illite accompanying such clay minerals as kaolinite, chlorite, and smectite. Pyrophyllite ore at the center of altered mass is often associated with kaolin minerals and high temperature minerals such as corundum, andalusite, and diaspore. On the basis of mineral assemblage the Haenam deposit can be devided into three alteration zones from the center to the margin of the deposit; the pyrophyllite zone, kaolinite zone, and illite zone. All alteration zones are associated with appreciable amounts of chalcedonic quartz. Those mineral assemblages indicate that hydrothermal solution which produced the Haenam deposit is strongly acidic solution with high silica and hydrogen activity and low $SO_4{^{2-}}$ activity. Discriminant analysis shows that $Na_2O$, $K_2O$, and $Al_2O$, of major elements are discriminant elements which classify alteration zones, while in case of trace elements Cr, Ni, and Sr turned out to be discriminant elements in this deposit. According to the mineral assemblage and illite geothermometry, pyrophyllite ore is considered to have been formed at about $240-290^{\circ}C$. K-Ar isotopic age for illite from this deposit indicates that it was formed at much the same age of later stage volcanics in the area, suggesting that the hydrothermal alteration of these deposits is associated with later volcanism of the area.

  • PDF

A Study on the Genesis and Distribution of High Refractory Ore Minerals in Jeonnam Province, Korea (고내화도(高耐火度) 광석광물(鑛石鑛物)의 분포(分布)와 성인(成因)에 관(關)한 연구(硏究) -전남지역(全南地域)을 중심(中心)으로-)

  • Park, Hong Bong;Kwon, Sook Moon;Park, Bae Young;Sin, Sang Eun
    • Economic and Environmental Geology
    • /
    • v.15 no.2
    • /
    • pp.89-102
    • /
    • 1982
  • Several mines in Jeonnam produce the ores of having high SK number of refractoriness. Among those for 5 mines, this paper deals with the relationahip between SK number and mineral composition of the ore, and with the genesis of the deposits. 1. Byok-Song and Chon-Un Mine: Mineral compositions of the ores are chiastolite, chloritoid(monoclinic), kaolinite, sericite, diaspore, corundum, and quartz. The ores having SK number of 36 or 37, consist chiefly of chiastolite and diaspore and a little amount of kaolinite, sericite, corundum, chloritoid, and quartz. The ores having SK number of 33 or 34 consist of chloritoid, sericite, kaolinite, chiastolite, and diaspore. With increasing the amount of chloritoid and sericite, and decreasing the amount of diaspore and chiastolite, the SK number of the ores decreases. The deposit, originally high alumina-bearing shale of Chon-Un San formation, seems to be formed by contact metamorphism(forming of chiastolite), regional metamorphism(forming of monoclinic chloritoid), and hydrothermal replacement(forming of large crystal of diaspore veinlets). 2. Song-Sauk Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz and a little amount of kaolinite, dickite, diaspore, and pyrite. Many spherical inclusions containing in pyrophyllite deposits, consist chiefly of diaspore and kaolinite, The inclusions have the high SK number of 38. Amount of spherical inclusions is about 5 % to the whole pyrophyllite ores. The SK number of other pyrophyllite ore is less than 32. Quartz and pyrite are chief minerals lowering the SK number of the ore. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff of Mesozoic age. Spherical inclusions consisting of diaspore and kaolinite, show the selective replacement of hydrothermal solutions to the materials of feldspar in tuff. 3. Seung-San Mine: Mineral compositions of the ores are chiefly kaolinite, dickite, diaspore, and quartz. But some part of the mine consists of alunite deposits. The ores having SK number of 35 or higher consist chiefly of kaolinite and diaspore and a little amount of quartz. With increasing the amount of quartz and decresing the amount of diaspore, the SK number of the ore decreases. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff and quartz porphyry. 4. Wan-Do Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz. But some ore contains a little amount of diaspore, kaolinite, pyrite, and chloritoid. The ores having high SK number of 36 consist chiefly of diaspore and pyrophyllite. Pyrophyllite ore has a SK number of 32 or lower. Amount of quartz and pyrite decreases the SK number of ores in this mine. Rhyolite was replaced by the action of hydrothermal solutions forming the pyrophyllite deposits.

  • PDF

The Mineralogical and Chemical Characteristics of Fe Impurities and the Efficiency of their Removal Using Microwave Heating and Magnetic Separation in the Pyrophyllite Ore (엽납석광석에 존재하는 Fe 불순물의 광물학적/화학적 특성과 마이크로웨이브 가열 및 자력분리에 의한 제거효과)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.47-58
    • /
    • 2016
  • The Fe-component of pyrophyllite is an impurity that reduces its grade in the final product. In order to identify the amount of impurity in pyrophyllite and to remove the Fe from the ore using a dry method, microwave heating and magnetic separation were carried out. Pyrite and hematite were identified to contain pyrophyllite by microscopy, XRD, XRF, SEM/EDS and EPMA analysis. It is suggested that the euhedral pyrite in the pyrophyllite is formed by hydrothermal solution, and then the dissolution cavity structure is formed with a partial remainder of the pyrite which dissolved in acidic water. And the $Fe^{3+}$ ion contained in the acidic water precipitated out in the concentric structure of hematite as the origin of sedimentary structure. As a result of the microwave heating and magnetic separation experiments, the Fe removal rates obtained were 96% and 93% from pyrophyllite ore from the Sunsan mine and Wando mine, respectively. It is confirmed that the microwave heating and magnetic separation method was an environmentally friendly method to upgrade the low-grade pyrophyllite.

Feasibility of Pyrophyllite Ceramic Membrane for Wastewater Treatment and Membrane Fouling (국내산 납석기반 세라믹 멤브레인 수처리 적용 가능성 평가 및 파울링 현상관찰)

  • Park, Eunyoung;Jang, Hoseok;Choi, Nakcheol;Lee, Sungjae;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.205-211
    • /
    • 2016
  • Performance of pyrophyllite-based ceramic membranes newly developed were investigated. Membrane fouling caused by microbial suspensions taken from a full-scaled MBR system at domestic wastewater treatment plant was observed at different airflow rate and distance between each membrane. For the pyrophyllite support, pore size was about $1.0{\mu}m$, but surface coating with $Al_2O_3$ solution decreased the pore size with the reduction of the pure water permeability. With the MLSS taken from the full-scaled MBR system (6 g/L), the fouling rate was decreased by increasing airflow rate under $20L/m^2{\cdot}hr$ of setpoint flux. However, the effectiveness of the airflow rate on the fouling control depends strongly upon the gap between each membrane. At fixed airflow rate, the fouling rate was decreased by increasing the gap between each pyrophyllite membrane. Nevertheless, further increasing the membrane distance from 3.5 to 5.4 cm resulted in higher fouling rate. Similar result was observed with the $Al_2O_3$ coated-pyrophyllite membrane. Nevertheless, the fouling rate was lower with the coated membrane than that observed with the uncoated pyrophyllite support. Regardless of surface coating, the suspended solids were removed almost completely and the surface coating on the pyrophyllite support improved organic rejection with PEG solution (MW : 8000 kDa) tested.

Mineralogical Characteristics and Designation of Key Beds for the Effective Surveys of the Jeonnam Pyrophyllite Deposits (전남일원 납석광상의 광물학적 특성과 효과적 탐사를 위한 Key Beds의 선정)

  • Yoo, Jang-Han;Kim, Yong-Ug;Lee, Gill-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.297-305
    • /
    • 2009
  • Ores of the Jeonnam pyrophyllite province mainly consist of not only pyrophyllite but also kaolinite, and they usually contain minor amounts of muscovite and quartz. We usually call them as porcelaneous stones which usually show lower grade characteristics in the viewpoint of Korean nonmetallic industries. Mineralogical studies for the ores and their intimate formations revealed that another kind of clay minerals could have been produced from the volcanic sediments with similar ages and compositions. Corundum is commoner than the diaspore in the pyrophyllite deposits, and so diaspore can be regarded as one of temporary minerals from which corundum would be finally formed. Kaolinite deposits contain neither diaspore nor corundum, but alunites produced by an advanced argillic alteration are often observed in the upper portions of the kaolin ores. The lowest formation interbedded with pyrophyllite and/or kaolinite ores usually contain purple tuff bed on the uppermost part, and in ascending order, siliceous formation, fine ash tuff and lapillistone are found in the study areas. As ages are becoming younger, amounts of pyrophyllite and kaolinite are radically decreased, or disappeared completely. On the other hand, content of muscovite is slightly increased, and those of plagioclase feldspars and quartz are found to have been preserved from the original rocks during alteration process. Most of ore bodies show rather well bedded formations which are easily discernable in the outcrops, but more effective discremination is desirable where rather massive ores exist. Siliceous beds and purple tuff ones on the upper part of ore bodies would be useful as marker horizons or key beds which have distinct lithologies and extensions.

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF

A Study on the Ceramic and Clay Mineral Resources and its Genesis in Cheonnam Province and Hadong Area (전남(全南)과 하동지역(河東地域)에서 산출(産出)하는 요업(窯業) 및 점토(粘土) 광물자원(鑛物資源)과 성인(成因)에 관(關)한 연구(硏究))

  • Park, Hong Bong;Park, Bae Young;Shin, Sang Eun;Huh, Min
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.1-15
    • /
    • 1988
  • This is a study on the mineral compositions, SK numbers of refractoriness and the genesis of the clay mineral deposits in Cheonnam Province and Handong area. 1. Jindo kaolin deposits: Chief clay minerals of the deposits are kaolinite, quartz and alunite. The SK number of the ore is from $34^+$(the highest) to 27(the lowest). On the genesis of the deposits some geologists believe that the deposits were formed by the alteration of the siliceous tuff. But the deposits seems to be formed by the hydrothermal alteration of the rhyolite lava beds. This area is formed by alternative beds of tuff; and kaoline deposits. 2. Hadong area: Chief mineralogy of Hadong kaolin area is $10{\AA}$ halloysite and kaolinite. The SK number of some of the ore is up to $36^+$. The theoretic SK number of kaolinitic composition is 35. So one of the highest alumina minerals of gibbsite is formed in the ores of $36^+$ SK numbers. 3. Hampyong kaolin deposits: Most of kaolin has black color. The chief minerals are kaolinite, quartz and muscovite. Some of the kaoline contains rutile crystals. SK number ranges from 30 to 17. The kaolin deposit is formed by the transported sedimentation in lower part of the seashore. 4. Jangsan kaoline deposits: Chief minerals of the kaolin is kaolinite, quartz and muscovite. Some kaoline contains small crystals of pyrite. This area consists almost of the tuffs. Kaolin deposits also would be formed by the alteration of the tuffs. 5. Nohwado pyrophyllite deposits: Quartz and pyrophyllite are chief minerals. SK number of the ore ranges from 32 to 30. The pyrophyllite deposits would be formed by the hydrothermal alteration of the rhyolitic lava beds. This area consists of alterative beds of tuffs and rhyolitic lavas. 6. Songsuk pyrophyllite deposits: Chief minerals are quartz, kaolinite, pyrophyllite and iron oxides. In the pyrophyllite deposits egg-like inclusions of diaspore and kaolinite in composition. This area almost consists of tuffs. Several faults are developed and along the fault the tuff would begin to alter to pyrophyllite and some parts to diaspore and kaolinite nodules by the acts of hydrothermal solution.

  • PDF

A Study on the Muscovite-Pyrophyllite Mixed Phase in the Shale from the Manhang Formation, Taebaek Area (태백지역 만항층 셰일에서 산출되는 백운모-파이로필라이트 혼합상에 대한 연구)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • Mica-type phyllosilicate particles in the shales of the Manhang formation at the Taeback area in the Kangwon Province were studied using electron probe microanalysis (EPMA) and transmission electron microscopy (TEM). The average chemical formula of the mica-type phyllosilicate mineral analysed by EPMA is $K_{1.35}(Fe_{0.18}Mg_{0.03}Al_{3.86})(Si_{6.55}Al_{1.45})O_{20}(OH)_4$. Low K contents compared to the ideal chemistry of muscovite indicate the presence of illite in the mica-type phyllosilicate particle. X-ray diffraction study showed that pyrophyllite commonly coexists with muscovite in the shales from the Manhang Formation. TEM observations showed both the interlayer and intralayer mixing of $9.3-{\AA}$ pyrophyllite and $10-{\AA}$ muscovite layers. The low K content of the mica-type phyllosilicates apparently come from the close mixing of pyrophyllite and muscovite.