• Title/Summary/Keyword: Pyrophoric synthesis method

Search Result 2, Processing Time 0.019 seconds

Reaction Characterization of Y2Ba1CU1O5 Oxides by Solid State Reaction Method and Pyrophoric Synthesis Method (고상반응법과 발화합성법에 의한 Y2Ba1CU1O5 산화물의 반응특성)

  • Park, Jeong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.772-777
    • /
    • 1999
  • $Y_2Ba_1Cu_1O_5(Y211)$ powders were prepared by pyrophoric synthesis method and by solid state reaction method using $Y_2O_3(99.9%)$, $BaCO_3(99.9%)$, and CuO(99.9%) powders in both of these processes. The phase formation and reaction kinetics of $Y_2Ba_1Cu_1O_5$ powders have been studied using X-ray diffraction analysis(XRD) of samples at various heat treatment temperatures and reaction time. The reaction characterization suggested that the phase formation rate is mainly controlled by the particle size of Y211 powders. The activation energy(${\Delta}E_a$) of Y211 phase formation in this pyrophoric synthesis method was found to be 136.42 kJ/mol compared with 149.46 kJ/mol for that of solid state reaction method. These results data showed that the pyrophoric synthesis method is kineticaly more efficient than the solid state reaction method in this $Y_2Ba_1Cu_1O_5$ system.

  • PDF

Effect of the pH of Pyrophoric Synthetic Solution on the Formation Kinetics of Y1Ba2Cu3O7-x Superconducting Phase (발화합성용액의 pH가 Y1Ba2Cu3O7-x 초전도상 생성 속도에 미치는 영향)

  • Park, J.S.;Kim, Y.S.;Yang, S.W.;Kim, C.Y.;Shin, H.S.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.165-171
    • /
    • 1998
  • The $Y_1Ba_2Cu_3O_{7-x}$(123) superconductor powders were prepared by pyrophoric synthesis method(PSM) using $Y_2O_3$(99.9%), $BaCO_3$(99.9%), and CuO(99.9%) powders. The phase formation and reaction kinetics of 123 superconductor manufactured with powders prepared in various pHs of pyrophoric synthetic solution have been studied through the experiments at various heat treatment temperatures and times. Inductively coupled plasma(ICP) spectroscopy and scanning electron microscopy(SEM) measurements were performed to examine the composition and morphology of the sample. X-ray diffraction(XRD) analysis was done to determine phase formation and conversion ratio of Y-Ba-Cu-O systems. The 123 powder prepared at pH 7(${\pm}0.3$) yields the best result in terms of purity, homogeneity, and reactivity. The activation energies(${\Delta}E_a$) of 123 phase formation were found to be 191 kJ/mol and 230kJ/mol in solid state reaction method and pyrophoric synthesis method, respectively.

  • PDF