• Title/Summary/Keyword: Pyrometer

Search Result 38, Processing Time 0.026 seconds

An Experimental Study on the Effects of Concentration Gradient and Mean Velocity on the Liftoff Characteristics of the Triple Flame (농도구배와 평균속도가 삼지화염의 부상 특성에 미치는 영향에 관한 실험적 연구)

  • Seo, Jeong-Il;Kim, Nam-Il;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1061-1070
    • /
    • 2003
  • A triple flame in a mixing layer was studied experimentally with concentration gradient and mean velocity by using a multi-slot burner, which can stabilize the lift-off flame. Flame stabilization condition, lift-off heights, and some other characteristics were examined for methane and propane flame within a range of very low concentration gradient. Pitot-tube and LDV(Laser Doppler Velocimetry) were used for velocity. Mass spectroscopy and Rayleigh scattering signal were used for concentration gradients. Thermo-couples and SiC TFP(Thin Filament Pyrometer) were used for temperature. It was found that minimum values of the lift-off heights exist at a certain concentration gradient for constant mean velocity and this means that the propagation velocity has a maximum value. The scales of flame to the burner nozzle and intensity variation of the diffusion flame were suspected as the cause.

Design and Implementation of Lamp-Heated LPCVD System (램프 가열 방식 LPCVD 장비의 설계 및 제작)

  • Ha, Yong-Min;Kim, Tae-Sung;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.299-303
    • /
    • 1991
  • A lamp heated LPCVD equipment has been made. Wafer is heated by an array of fifteen tungsten halogen lamps above the front side of a wafer and pyrometer views the back side of the wafer through $CaF_2$ window. Reactor which consisits of a quartz window and a water cooled-stainless steel plate can be evacuated to $5{\times}10^{-3}$ torr with a rotary vane pump. By pyrolysis of $SiH_4$ at about $600^{\circ}C$, polysilicon has been formed on the silicon dioxide film. The measured results show that thickness nonuniformity is 15% and temperature nonuniformity is 1.1%. Because activation energy of pyrolysis of $SiH_4$ is very high, about 1.8eV, small temperature variation will induce large thickness nonuniformity. The main cause of temperature nonuniformity is unsymmetry of lamp power and an unbalanced cooling structure. Charls & Evans' SIMS result shows that the oxygen content in the deposited polysilicon is comparable to that of silicon substrate but carbon content is ten times higher.

  • PDF

The Basic Study on Machinability of Ceramics in CO2 Laser Assisted Machining (CO2 레이저 보조가공에 의한 세라믹재료의 가공성에 관한 기초 연구)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.322-329
    • /
    • 2009
  • Machinability of LAM(Laser Assisted Machining) has been studied for ceramics such as $Al_2O_3$, $Si_3_N4$ and $ZrO_2$ by $CO_2$ laser. It was possible to remove ceramics by PCBN tool because material became softening and deterioration by local laser beam irradiation. The advantage of LAM is the ability to produce larger material removal rates and tool life. But, for cutting of $Al_2O_3$ and $ZrO_2$, stage of laser power control was needed owing to thermal shock with high temperature of workpiece by laser power. And when $Si_3N_4$ was machined by LAM, $N_2$ gas spouted from surface of one cause of high temperature. Characteristics of LAM were analyzed using pyrometer, dynamometer, SEM and EDS to measure temperature of workpiece surface, cutting force, variation of machining surface and structure of lattice respectively. As the result of this study, it was found that machinability of LAM for ceramics in $CO_2$ laser and mechanism of LAM was different according to the kind of ceramics because of properties of materials.

Characterization of Surface treatment for Mold materials using optical system of laser heat treatment (레이저 열처리 광학계를 이용한 금형소재의 표면 열처리 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Shin, Hyung-Heon;Ro, Kyoung-Bo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1542-1547
    • /
    • 2007
  • Laser surface treatment technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface treatment for the case of SKD61 steel and SCM4 steel. From the results of the experiments, it has been shown that the maximum average hardness is approximatly 700${\sim}$780 Hv when the power, focal position and the travel of laser are 1,095 W, 0mm and 0.3 m/min, respectively. In samples treated with lower scanning speeds, some small carbide particles appear in the interdendritic regions. This region contains fine martensite and carbide in proportions which depend on the local thermal cycle.

  • PDF

Measurement of temperature profile in molter metal using a cod camera (ccd 카메라를 이용한 금속 용융면의 온도분포측정)

  • 노시표;정의창;임창환;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • Using a high fewer electron beam gun (max. power 20 kW), Gadolinium (Gd, atomic number 64) metal was melted and the temperature distribution of melted surface was measured. With proper optical filters and the adjustment of aperture of lens, the radiation of melted surface was received by a ccd camera and its signal transferred to a computer. The real time monitoring of melted surface with a variation of electron beam Power was Possible and stable operation of electron beam was achieved. It was found that the max. temperature measured by a ccd camera with an assumption of blackbody radiation of melted Gd surface and adaption of Planet's law was above 100~$200^{\circ}C$ compared to that measured by a pyrometer in the same e-beam power.

Characteristics of Si3N4 Laser Assisted Machining according to the Laser Power and Feed Rate

  • Kim, Jong-Do;Lee, Su-Jin;Suh, Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.963-970
    • /
    • 2010
  • This study makes an estimate of the laser-assisted machining (LAM) of an economically viable process for manufacturing precision silicon nitride ceramic parts using a high-power diode laser (HPDL). The surface is locally heated by an intense laser source prior to material removal, and the resulting softening and damage of the workpiece surface simplify the machining of the ceramics. The most important advantage of LAM is its ability to produce much better workpiece surface quality compared to conventional machining. Also important are its larger material removal rates and longer tool life. The cutting force and surface temperature were measured on-line using a pyrometer and a dynamometer, respectively. Tool wear, chips and the surface of the workpiece were measured using optical microscopy, and the surface and fractured cross-section of $Si_3N_4$ were measured by SEM. During the LAM process, the cutting force and tool wear were reduced and oxidation of the machined surface was increased according to the increase in the laser power. Moreover, the more the feed rate increased, the more the cutting force and tool wear increased.

Effect of Surface States of the Substrate on the Temperature Rampup Rate During Rapid Thermal Annealing by Halogen Lamps (할로겐 램프에 의한 급속 열처리에서 기판 표면 상태에 따른 온도 상승 효과에 관한 연구)

  • 민경익;이석운;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.10
    • /
    • pp.840-846
    • /
    • 1991
  • In case of the rapid thermal process by halogen lamps, an optical pyrometer is generally used to measure the temperature. It is, however, necessary to measure the temperature by the thermocouple when the process temperature is lower than 700$^{\circ}C$ and the correction of the temperature is required. Contact by the PdAg paste is commonly used out but in this case it is impossible to see the effect of surface states of the substrate, which is critical in the rapid thermal process. In this study, real temperature ramping speed of silicon substrates coveredwith various thin films such as SiO$_2$2, Si$_{3}N_{4}$, dopants, and conductive layers (Ti or Co) was investigated by a mechanical contact of the thermocouple. And the results were compared with the case in which the contact was made by the PdAg paste. Effect of process ambient was also studied. It was found that depending on the surface state, overshoot more than 100$^{\circ}C$ could occur. It was also found that in case of the substrate covered with conductive layers, mechanical contact might render the correct temperature.

  • PDF

Characteristics of Surface Hardening for Hot Work Tool Steel using Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 열간금형 공구강의 표면경화 특성)

  • Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.57-67
    • /
    • 2007
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance fur mold parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface hardening for the case of SKD61 steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. From the results of the experiments, it has been shown that the maximum average hardness is approximatly 780 Hv when the power, focal position and the travel of laser are 1,095 W, 0mm and 0.3 m/min, respectively. In samples treated with lower scanning speeds, some small carbide particles appear in the interdendritic regions. This region contains fine martensite and carbide in proportions which depend on the local thermal cycle.

Characteristics of Surface Hardening by Laser Power Control in Real Time of Spheroidal Graphite Cast Iron (실시간 출력 제어를 통한 구상흑연 주철의 레이저 표면경화 특성)

  • Kim, Jongdo;Song, Mookeun
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • This study is related to the surface hardening treatment to spheroidal graphite cast iron for die by using high power diode laser. Laser device used in this experiment is capable of real-time laser power control. This is because the infrared temperature sensor (two color pyrometer) attached to the optical system measures the surface temperature of specimen and adjusts the laser power in real time. The surface treatment was carried out with the change of heat treatment temperature at the beam travel speed 3 mm/sec. Hardened width and depth was measured and hardened zone was analyzed by micro vickers hardness test in order to research the optimum condition of heat treatment. The changes in microstructure of the hardened zone also was examined. As a result of hardness measurement and observations on microstructure of hardened zone, hardness increased over three times as compared with base metal because the martensite was formed on the matrix structure.

An Experimental Study on the Combustion Characteristics of Wastewater-Emulsion Fuel (Emulsion(B.C유+폐수)연료의 연소효율에 관한 실험적 연구)

  • 정진도
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.267-273
    • /
    • 2003
  • Emulsion fuel is a very attractive fuel because of its energy saving and pollution prevention properties. We investigated and compared the combustion efficiency of B-C oil and emulsion fuel i.e. fuel made from the mixture of B-C oil and waste water. By installing an R-type thermocouple and an optical pyrometer on each side of the boiler, and by placing a combustion analyzer at the point of gas emissions, We were able to measure and compare each flame temperature, combustion rate and the concentration of emitted gas when B-C oil and emulsion fuel are burned. The following results were obtained: The flame temperature of emulsion fuel at the front and rear of the boiler is about 50$^{\circ}C$ lower than the flame temperature of B-C oil. The reason for this difference in temperature is that both latent and sensible heat is lost due to the moisture in the waste water of emulsion fuel. An analysis of emitted gases shows that when emulsion fuel is used polluting substances decrease also the concentration of CO becomes considerably lower. The combustion efficiency for B-C oil and emulsion fuel is 85.5% and 84.8% respectively.