• 제목/요약/키워드: Pyrolyzer

검색결과 44건 처리시간 0.018초

실험실 규모 열분해로에서의 플라스틱 탈염 특성 연구 (A study on the Chlorine removal characteristics of Plastics in a Lab-scale Pyrolysis reactor)

  • 박주원;박상신;양원;류태우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.155-160
    • /
    • 2007
  • This study was conducted to find out the chlorine removal characteristics of waste plastic mixture by pyrolysis process with thermogravimetric analysis(TGA) and a lab-scale pyrolyzer. The material used as plastic wastes were PE (Poly-ethylene), PP (Poly-prophylene), and PVC (Poly Vinyl Chloride). Experimental procedure were composed of three steps; 1st step: TGA of PVC, PP and PE, 2nd step: chlorine removal rate of PVC in a lab-scale pyrolyzer, 3rd step: chlorine removal rate of PVC-PE and PVC-PP mixture in a pyrolyzer. Through the results of TGA, we can estimate the basic pyrolysis characteristics of each plastic, and then we can also derive the design parameters and operating conditions of the lab-scale pyrolyzer. The results can be used as primary data for designing a system to produce RPF (Refuse Plastic Fuel), a waste incinerator and a pyrolysis/gasification process.

  • PDF

Curie-point pyrolyzer-GC/MSD를 이용한 4-hydroxy-3-methoxybenzaldehyde의 열분해물 분석 (Analysis of 4-hydroxy-3-methoxybenzaldehyde pyrolyzates by Curie-point pyrolyzer-GC/MSD)

  • 유의경;김옥찬
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.8-15
    • /
    • 1997
  • 바니린을 Curie-point pyrolyzer-GC/MSD 장치를 사용하여 920, 740, 500, $333^{\circ}C$에서 각각 열분해하고, 열분해 생성물을 분리 및 확인하였다. 확인된 성분중에서 $920^{\circ}C$에서는 95개 성분, $740^{\circ}C$에서는 40개 성분, $500^{\circ}C$에서는 17개 성분, $333^{\circ}C$에서는 11개 성분을 확인할 수 있었으며 이 열분해 반응생성물 중 주요 생성물인 벤젠, 페놀, 2-히드록시 벤즈알데히드, 2-메톡시페놀, 4-메톡시벤즈알데히드, 벤즈알데히드, 메톡시벤젠, 1,3-시크로펜타디엔 등은 바니린의 작용기가 해리되었거나, 분해된 생성물로 생각되며, 1,3-benzodioxole-5-carbox-aldehyde, 메틸벤젠, 스틸렌, 메틸페놀 등은 $500^{\circ}C$ 이하에서도 바니린의 메톡시 작용기가 해리되어 생성되는 것으로 생각된다.

  • PDF

Effect of Carbonized Biomass Application on Organic Carbon Accumulation and Soy Bean Yields in Upland Soil

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob
    • 한국토양비료학회지
    • /
    • 제49권1호
    • /
    • pp.1-6
    • /
    • 2016
  • Carbonized biomass could be used as a mechanism for long-term storage of C in soils. However, experimental results are variable. Objective of this study was carried out to evaluate the effect of carbonized biomass made from soybean residue on soil organic carbon and seed yield during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. Pyrolyzer was performed in a reactor operated at $400{\sim}500^{\circ}C$ for 2 hours using soybean residue. The treatments consisted of four levels as the control without input and three levels of carbonized biomass inputs as $357kg\;ha^{-1}$, C-1 ; $714kg\;ha^{-1}$, C-2 ; $1,428kg\;ha^{-1}$, C-3. It was appeared that seed yield of soybean was $2,847kg\;ha^{-1}$ for control, $2,897kg\;ha^{-1}$ for C-1, $2,946kg\;ha^{-1}$ for C-2 and $3,211kg\;ha^{-1}$ for C-3 at the end of experiment. It was shown that the contents of SOC were $5.21g\;kg^{-1}$ for C-1, $5.93g\;kg^{-1}$ for C-2, $7.00g\;kg^{-1}$ for C-3 and $4.73g\;kg^{-1}$ for the control at the end of experiment. Accumulated SOC contents linearly significantly (P < 0.001) increased with increasing the carbonized biomass input. The slopes (0.00162) of the regression equations suggest that SOC contents from the soil increase by $0.162g\;kg^{-1}$ with every $100kg\;ha^{-1}$ increase of carbonized biomass rate. Consequently the carbonized biomass for byproducts such as soybean residue could increase SOC. It might be considered that the experimental results will be applied to soil carbon sequestration for future study. More long-term studies are needed to prove how long does SOC stay in agricultural soils.

열분해 조건에 의한 담배 성분과 첨가제의 열분해 특성 (The Pyrolytic Behaviors of Tobacco Constituents and Additives by Double-Shot Pyrolyzer)

  • 이재곤;장희진;곽재진;이동욱;이창국
    • 한국연초학회지
    • /
    • 제26권2호
    • /
    • pp.141-151
    • /
    • 2004
  • This study was conducted to evaluate the characterization of the pyrolysis products of tobacco constituents such as cellulose, lignin and tobacco additives. The pyrolysis condition was designed to simulate the pyrolysis/distillation zone$(200\~600^{\circ}C)$ and combustion zone$(700\~950^{\circ}C)$of burning com in the smoking cigarette. The pyrolysis products were determined by GC/MS after pyrolysis using Double-Shot pyrolyzer. In the case of cellulose and lignin, the number of pyrolysis product in the condition that simulate the pyrolysis/distillation zone was much more than the combustion zone simulating one. The major products of cellulose were levoglucosan, furfural, and 1, 6-anhydro-$\beta$-D-glucofuranose and that of lignin were phenol, 2-methoxy phenol, and 1, 2-dimethoxy benzene. In the case of tobacco additives such as 2, 6-dimethyl pyrazine, maltol, and piperonal, the pyrolysis products of these additives were evaporated from the pyrolyszer at least $96\%$ intactly. These results indicate that tobacco constituents such as cellulose and lignin were thermally degraded at the pyrolysis/distillation zone and thoroughly broke down at the combustion zone, but tobacco additives were intactly evaporated from burning com of smoking cigarette.

PINANE의 열 이성화 반응에 관한 연구 (The Study on the Thermal Isomerization of Pinane)

  • 이정복;김창배
    • 분석과학
    • /
    • 제5권4호
    • /
    • pp.373-379
    • /
    • 1992
  • 피난의 열 이성화반응 생성물에 관한 연구를 위하여 열분해 조건을 가스크로마토그래피와 질량분석기에 장치된 전기로형 및 curie-point 열분해기를 이용하여 실험을 행하였다. 그 결과, 최적 조건하에서 전기로형보다는 curie-point 열분해기에 의해서 피난으로부터 주 이성화 생성물인 citronellen (70%)을 얻었다. 본 연구에서 열분해 최적 조건은 $590^{\circ}C$, 4 Sec이고, 확인된 열분해 주 생성물은 citronellene, m-Menth-6-ene, m-Menth-1-ene, 1-Methyl-4(1-methyl-ethylidene) cyclohexane이었다.

  • PDF

Propylene Glycol과 glycerine의 열본해 특성 (Pyrolytic Behavior of Propylene Glycol and glycerine)

  • 이재곤;이창국;백신;장희진;곽재진;이동욱
    • 한국연초학회지
    • /
    • 제27권1호
    • /
    • pp.31-39
    • /
    • 2005
  • This study was conducted to evaluate the characterization of the pyrolysis products of propylene glycol(PG) and glycerine alone and together with tobacco. The weight change of the samples during the pyrolysis was measured by a thermal analyzer(STD-2960). The pyrolysis products were determined by GC/MS after pyrolysis using a curie-point pyrolyzer(CPP, $220^{\circ}C,\;420^{\circ}C,\;650^{\circ}C,\;and\;920^{\circ}C$) and a double-shot pyrolyzer(DSP, $220^{\circ}C,\;420^{\circ}C,\;650^{\circ}C,\;and\;800^{\circ}C$), respectively. The pyrolysis products from tobacco with and without the addition of PG($2\%$) and glycerine($2\%$ were assayed for its pyrolytic behavior. The results showed that a dramatic change in weight of PG and glycerine was observed at $175^{\circ}C\;and\;249^{\circ}C$, respectively. PG and glycerine showed different patterns for their pyrolysis products according to the method of pyrolysis. Namely, the change rate in pyrolysis with DSP was much higher than that of CPP at above $650^{\circ}C$. The major pyrolysis products of PG were propene, acetaldehyde, propanal, and acetol; the major pyrolysis products of glycerine were 2-propenal, 2-propenol, acetol, and acetic acid. In the pyrolysis experiments of tobacco added PG and glycerine, the pyrolysis products of PG and glycerine weren't detected additionally, except for diethyleneglycol diacetate. From these results, it can be concluded that the PG and glycerine added to tobacco would not be expected to pyrolyse extensively during smoking.

인화성액체를 촉진제로 사용한 방화화재의 감식기법에 관한 연구 (Arson Fire Analysis Involving the Use of Flammable Liquilds as Accelerants)

  • 최민기;한동훈;최돈묵
    • 한국화재소방학회논문지
    • /
    • 제28권4호
    • /
    • pp.64-72
    • /
    • 2014
  • 본 연구에서는 연소잔류물에 남아있는 미세한 인화성액체의 성분을 검출하기 위해 가스검지관, Gas Chromatograph/Mass Spectrometer (GC/MS), 열분해분석장비를 활용하였다. 일반적으로 연소했을 경우와 인화성액체를 첨가하여 연소된 경우의 성분분석결과를 비교하였다. 결과적으로 인화성액체를 첨가하지 않고 연소 후 생성된 화재잔해물에서도 가스검지관이 반응하는 것을 확인할 수 있었다. 일반적인 연소와 열분해를 통해 생성된 화학성분의 차이가 있었으며, 이는 연소 환경의 차이로 인한 것으로 판단된다. 대표적인 석유화학제품인 우드데코타일(PVC) 시료는 인화성액체를 첨가하지 않고 일반적으로 연소시켰을 경우에도 감정인의 정확한 판단을 방해할 수 있는 방해물질인 Toluene, Ethylbenzene, Undecane, Dodecane 등이 검출되는 것을 확인하였다.

Effect of the Application of Carbonized Biomass from Crop Residues on Soil Organic Carbon Retention

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob;Shin, Joung-Du
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.486-490
    • /
    • 2014
  • This study was conducted to investigate the effect of carbonized biomass from crop residues on soil carbon storage during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. The treatments consisted of control without input and three levels of carbonized biomass inputs as $59.5kg10a^{-1}$, C-1 ; $119kg10a^{-1}$, C-2 ; $238kg10a^{-1}$, C-3. Soil samples were collected during the 113 days of experimental periods, and analyzed soil pH and moisture contents. Soil carbon contents and soybean yield were measured at harvesting period. For the experimental results, soil pH ranged from 6.8 to 7.5, and then increased with increasing carbonized material input. Soil moisture contents were slightly higher by 0.1~1.5% than the control, but consistent pattern was not observed among the treatments. Soil carbon and organic carbon contents in the treatments increased at 24 and 15% relative to the control at 15 days after sowing, respectively. Loss rate of SOC (soil organic carbon) relative to its initial content was 7.2% in control followed by C-1, 6.8%> C-2, 3.5%>C-3, 1.1% during the experimental periods. The SOC change rate decreased with increasing carbonized biomass rate. It was appeared that soybean yields were $476.9kg10a^{-1}$ in the control, and ranged from 453.6 to $527.3kg10a^{-1}$ in the treatments. However, significant difference was not found among the treatments. It might be considered that the experimental results will be applied to soil carbon sequestration for future study.

Characterization of Crop Residue-Derived Biochars Produced by Field Scale Biomass Pyrolyzer

  • Jung, Won-K.
    • 한국토양비료학회지
    • /
    • 제44권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Application of biochar to soils is proposed as a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. In addition to reducing emissions and increasing the sequestration of carbon, production of biochar and its application to soils will contribute improve soil quality and crop productivity. Objectives were i) to evaluate biochar productivity from crop residues using a low-cost field scale mobile pyrolyzer and ii) to evaluate characteristics of feedstocks and biochars from locally collected crop residues. Pyrolysis experiments were performed in a reactor operated at $400-500^{\circ}C$ for 3-4 hours using biomass samples of post-harvest residues of corn (Zea mays L.), cotton (Gossypium spp.), rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and wheat (Triticum aestivum L.). Feedstocks differed, but average conversion to biochar was 23%. Carbon content of biomass feedstock and biochar samples were 445 g $kg^{-1}$ and 597 g $kg^{-1}$, respectively. Total carbon content of biochar samples was 34% higher than its feedstock samples. Significant increases were found in P, K, Ca, Mg, and micro-nutrients contents between feedstock and biochar samples. Biochar from corn stems and rice hulls can sequester by 60% and 49% of the initial carbon input into biochar respectively when biochar is incorporated into the soils. Pyrolysis conversion of corn and rice residues sequestered significant amounts of carbon as biochar which has further environmental and production benefits when applied to soils. Field experiment with crop residue biochar will be investigated the stability of biochars to show long-term carbon sequestration and environmental influences to the cropping systems.