• 제목/요약/키워드: Pyrolysis process

검색결과 439건 처리시간 0.032초

분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process)

  • 유재근
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

Manufacture of Ultra Fine CuO Powder from Waste Copper Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Ahn, Zou-Sam;Sohn, Jin-Gun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.165-170
    • /
    • 2001
  • The main purpose of this study is to generate a fine copper oxide powder of high purity, with a compact structure and a uniform particle size by a spray pyrolysis process. The raw material is a waste copper chloride solution formed in the manufacturing process of Print Circuit Board (PCB). This study also examines the influences of various factors on the properties of the generated powder. These factors include the reaction temperature, the inflow speed of the raw material solution, the inflow speed of the air, the size of the nozzle tip, and the concentration of the raw material solution. It is discovered that, as the reaction temperature increases from 80$0^{\circ}C$ to 100$0^{\circ}C$ , the particle size of the generated powder increases accordingly, and that the structure of the powder becomes much more compact. When the reaction temperature is 100$0^{\circ}C$, the particle size of the generated powder increases as the concentration of copper in the raw material solution increases to 40g/l, decreases as the concentration increases up to 120g/l, and increases again as the concentration reaches 200g/1. In the case of a lower concentration of the raw material solution, the generated powder appears largely in the form of CuO. As the concentration increases, however, the powder appears largely in the form of CuCl. When the concentration of copper in the raw material solution is 120g/1, the particle size of the generated powder increases as the inflow speed of the raw material solution increases. When the concentration of copper in the raw material solution is 120g/1, there is no evident change in the particle size of the generated powder as the size of the nozzle tip and the air pressure increases. When the concentration is 40g/1, however, the particle size keeps increasing until the air pressure increases to 0.5kg/$\textrm{cm}^2$, but decreases remarkably as the air pressure exceeds 0.5kg/$\textrm{cm}^2$.

  • PDF

자기 조립 전구체를 이용한 초음파 분무 열분해 공정으로 제조한 BaFe12O19의 자기적 특성에 대한 연구 (A study on Magnetic Properties of BaFe12O19 Fabricated by Ultrasonic Spray-pyrolysis Process Using Self-Assembly Method)

  • 최문희;유지훈;김동환;정국채;김양도
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.263-269
    • /
    • 2010
  • Hexagonal barium ferrite ($BaFe_{12}O_{19}$) nano-particles have been successfully fabricated by spraypylorysis process. $BaFe_{12}O_{19}$ precursor solutions were synthesized by self-assembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. $BaFe_{12}O_{19}$ powders were synthesized with addition of Fe ions to Ba-DEA complex and then fabricated $BaFe_{12}O_{19}$ powders by spray-pyrolysis process at the temperature range of $800{\sim}1000^{\circ}C$. The molar ratio of Ba/DEA and heat-treatment temperatures significantly affected the magnetic properties and morphology of $BaFe_{12}O_{19}$ powders. $BaFe_{12}O_{19}$ powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at $900^{\circ}C$ showed the coercive forces (iHc) of 4.2 kOe with average crystal size of about 100 nm.

평균입도 30 nm 이하의 산화 팔라듐(PdO) 분체의 분무열분해공정에 의한 제조기술 개발 (Preparation of Nanosized Palladium Oxide Powder with Average Particle Size Below 30 nm by Spray Pyrolysis Process)

  • 김동희;유재근
    • 자원리싸이클링
    • /
    • 제27권2호
    • /
    • pp.32-37
    • /
    • 2018
  • 본 연구는 금속 팔라듐 및 산화 팔라듐의 재활용을 위한 전 단계 연구로 수행되었다. 본 연구에서는 산화 팔라듐(PdO)의 형성을 위한 열역학적 수식들을 확립하였다. 또한 고상의 염화 팔라듐($PdCl_2$)을 염산 용액에 용해시킨 염화 팔라듐 용액을 원료용액으로 사용하였다. 이 원료 용액으로부터 분무열분해 공정에 의하여 평균입도 30 nm 이하의 산화 팔라듐 분체를 제조하였다. XRD 분석 결과 생성된 분체는 오직 PdO 상이었으며 TEM 분석결과 형성된 나노 PdO 입자들은 단결정 상임을 확인하였다. 또한 생성된 PdO 분말의 비표면적은 약 $32m^2/g$이었다.

분무열분해공정에 의한 니켈 페라이트 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Ni-ferrite Powder by Spray Pyrolysis Process)

  • 유재근;서상기;박시현;한정수
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.202-209
    • /
    • 2004
  • In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80$0^{\circ}C$ to 110$0^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 $kg/cm^2, the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 $kg/cm^2 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.

Preparation of Nano-Sized Tin Oxide Powder from Tin Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Kim, Dong-Hee
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.396-402
    • /
    • 2011
  • In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.

열중량 분석법을 이용한 Deasphalted Oil의 열분해 특성 분석 (Study on the Pyrolysis Kinetics of Deasphalted Oil Using Thermogravimetric Analysis)

  • 신상철;이정무;이기봉;전상구;나정걸;노남선
    • Korean Chemical Engineering Research
    • /
    • 제50권3호
    • /
    • pp.391-397
    • /
    • 2012
  • 기존 경질 원유 자원의 매장량 고갈과 중국, 인도 등 개발도상국에서의 에너지 수요가 급증하면서 원유 자원의 공급이 수요를 감당하지 못하는 상황이 벌어지고 있고, 따라서 상대적으로 활용도가 낮았던 중질유를 효율적으로 이용하는 방안이 대두되고 있다. 중질유를 활용하기 위해서는 경질화 과정을 거쳐야하는데, 특히 공정이 단순하고 경제적인 열분해 기술이 적합하다고 할 수 있겠다. 본 연구에서는 중질유의 열분해 특성 분석의 기초 자료를 얻기 위해 중질유에서 아스팔텐이 제거된 deasphalted oil(DAO)의 열분해 실험을 수행하였다. DAO는 solvent deasphalting 공정을 통하여 얻어지며 주로 탄소수가 20~40인 물질들로 이루어져 있는데, DAO의 열분해 반응 속도론적 분석 결과와 비교 분석하기 위해 DAO의 평균 탄소수를 갖는 탄소수 30의 단일 물질들($C_{30}H_{62}$, $C_{30}H_{58}O_4S$, $C_{30}H_{63}O_3P$)을 선택하여 추가적인 열분해 실험을 수행하였다. 열분해 실험에서는 열중량 분석기를 이용하여 비등온 열분해 방법(10, 50, $100^{\circ}C$/min)으로 실험을 진행하였고, 열분해 반응을 분석하는 방법으로는 가장 기초적인 Arrhenius 방법을 비롯하여 Ingraham and Marrier 방법, Coats and Redfern 방법, Ozawa-Flynn-Wall 방법을 이용하였다. Arrhenius, Ingraham and Marrier, Coats and Redfern 방법으로 계산된 DAO의 열분해 반응 평균 활성화에너지 값은 72~99 kJ/mol이었다. 그리고 Ozawa-Flynn-Wall 방법으로 분석된 활성화에너지에서는 전환율의 증가에 따라 DAO의 경우 그 상승 폭이 단일 물질들에 비해 크게 나타났다.