• Title/Summary/Keyword: Pyrolysis at low temperature

Search Result 108, Processing Time 0.029 seconds

The Study on Characteristics of Polystyrene by Low Temperature Pyrolysis by using Co and Mo Dispersed Catalysts (Co 및 Mo 기반 촉매에 의한 폴리스티렌의 저온 열분해 특성에 관한 연구)

  • Park, Jun-Gyu;Kim, Jae-Kon;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.676-685
    • /
    • 2016
  • This study investigated the conversion of oil products from polystyrene by using dispersed Co and Mo catalyst on reaction time and concentration change for knowledging on characteristics at low temperature (425, 450 and $475^{\circ}C$) pyrolysis and reaction time(20~80 min, 15 min interval) in a batch reactor. It will be showed the conditions for optimum pyrolysis at reaction temperature $450^{\circ}C$ and the reaction time 35min, and the main components of the converted liquid oil were styrene and benzene derivatives by GC/MS. The oil products formed during pyrolysis were classified into gas, gasoline, kero, diesel and heavy oil according to the domestic specification of petroleum products. The pyrolysis conversion rate was showed as Co catalyst > Mo catalyst > Thermal in all reaction time at reaction temperature $450^{\circ}C$. The yields rate of gas, kerosine, diesel were the most hight at Mo Catalyst, gasoline was at thermal and heavy oil was at Co catalyst. The conversion rate and yields of the pyrolysis products were the most height when Co catalyst ratio was 100%.

Electrical Properties of High Tc Superconductors Using the Pyrolysis Method for Renewed Electric Power Energy

  • Lee Sang-Heon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.217-220
    • /
    • 2005
  • We have fabricated a superconducting YBCO system according to the pyrolysis method and low pressure apparatus. In our experiment, the X-ray diffraction pattern of the non doped YBaCuO layer indicated that the superconductor contained only 90K phase crystal. The critical temperature and critical current density for a thick layer at $650^{\circ}C$ were Tc=90 K and $Jc=6{\times}10^{4}A/cm^2$ at 90K. In low pressure apparatus, the 90 K phase YBaCuO was grown at a lower temperature compared with the normal system. Tc and Jc at $650^{\circ}C$ were Tc = 90 K and $Jc=6{\times}10^{4}A/cm^2$ at 90K.

The Characteristics of Nano-sized Cobalt Oxide Particles Prepared by Low Pressure Spray Pyrolysis (저압 분무열분해법에 의해 합성된 나노 크기의 코발트 산화물 입자의 특성)

  • Ju, Seo-Hee;Kim, Do-Youp;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.538-542
    • /
    • 2006
  • Nano-sized cobalt oxide powders were prepared by low pressure spray pyrolysis process. The precursor powders obtained by low pressure spray pyrolysis process from the spray solution with ethylene glycol had several microns size and hollow structure. The precursor powders obtained from the spray solution with optimum concentration of ethylene glycol formed the nano-sized cobalt oxide powders with regular morphology after post-treatment without milling process. On the other hand, the cobalt oxide powders obtained from the spray solution without ethylene glycol had submicron size and spherical shape before and after posttreatment. The mean size of the cobalt oxide powders formed from the spray solution with concentration of ethylene glycol of 0.7M was 180 nm after post-treatment at temperature of $800^{\circ}C$. The mean size of the powders could be controlled from several tens nanometer to micron sizes by changing the post-treatment temperatures in the preparation of cobalt oxide powders by low pressure spray pyrolysis process.

Atmosphere Effects in Low Temperature Pyrolysis of Chemical Solution Derived Pb(Zr, Ti) O3 Films

  • Hwang, Kyu-Seog;Lee, Hyung-Min;Kim, Byung-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.199-203
    • /
    • 1998
  • $Pb(Zr, Ti)O_3$ (Pb:Zr:Ti=1:0.52:0.48) thin films were prepared on single crystal MgO(100) substrates by dipping-pyrolysis process using a solution of constituent metal naphthenates as starting materials. The solution was spin-coated onto substrate and the precursor films were pyrolyzed at $200^{\circ}C$ in air or at $200^{\circ}C$ in argon for 1, 2, 5 and 24h, followed by final heat treatment at $750^{\circ}C$. For all the films, highly (h00)/(00l)-oriented Pb$Pb(Zr, Ti)O_3$ thin films with smooth surfaces and crack-free were obtained, whereas thin film pyrolyzed in air for 24 h exhibited polycrystalline character. According to the pole-figure analysis, epitaxy of the product films was found to depend on pyrolysis atmosphere.

  • PDF

Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis (ABS 수지의 저온 열분해에 의한 액화특성 연구)

  • Choi, Hong Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • The low temperature pyrolysis of ABS resin has been carried out in a batch reactor under the atmospheric pressure. The effect of the reaction temperature on the yield of pyrolytic oils has been determined in the present study. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The conversion reaches 80% after 60 min at $500^{\circ}C$ in the pyrolysis of ABS resin. The amount of the final product was ranked as gas heavy oil > gasoline > gas oil > kerosen based on the yield. The yields of heavy oil and gas oil increase with an increase in the reaction time and temperature.

Chemical Vapor Deposition of $\beta$-SiC by Pyrolysis of MTS and Effect of Excess C Sources (MTS의 열분해를 이용한 $\beta$-SiC의 화학증착 및 Excess C 공급원의 영향)

  • 최병진;박병옥;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.46-54
    • /
    • 1993
  • $\beta$-SiC was chemically vapor deposited by pyrolysis of MTS+H2 gas mixture. The experiments were conducted in the temperature range of 1100~150$0^{\circ}C$ with a r.f. induction furnace under atmospheric pressure. The IR, XRD, EDS and AES analysis revealed that the free Si was always codeposited with SiC below 140$0^{\circ}C$, regardless of the total flow rate and MTS concentration, whereas $\beta$-SiC single phase was deposited at 150$0^{\circ}C$. C3H8 or CH2Cl2 as an excess C sources, was supplied with MTS in order to obtain stoichiometric SiC at low temperature. With the addition of C3H8 or CH2Cl2, the deposition rate was increased and $\beta$-SiC single phase could be deposited even at temperature as low as 110$0^{\circ}C$. In the absence of C3H8 or CH2Cl2, the microhardness of the layer was quite low (

  • PDF

Effect of Solution Properties on Luminance Characteristics of YAG:Ce Phosphors Prepared by Spray Pyrolysis (분무열분해법으로 YAG:Ce 제조시 용액 조건이 발광특성에 미치는 영향)

  • Lee, You-Mi;Kang, Tae-Won;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.220-225
    • /
    • 2012
  • YAG:Ce yellow phosphor particles were synthesized by spray pyrolysis with changing the solution properties and their luminous properties, crystal structure, and morphological changes were studied by using PL measurement, XRD, and SEM analysis. It was clear that the solution properties significantly affected the crystal phase, crystallite size, the PL intensity, and the morphology of YAG:Ce particles. At low calcination temperature, the addition of urea only to the spray solution was helpful to form a pure YAG phase without any impurity phases, as the result, the highest luminescence intensity was achieved at the calcination temperature of $900^{\circ}C$. When the calcination temperatures were larger than $1300^{\circ}C$, however, the YAG particles prepared without any additive showed the highest luminescent intensity. Regardless of the solution conditions, the emission intensity of YAG:Ce particles prepared by spray pyrolysis showed a linear relation with the crystallite size. In terms of the morphology of YAG:Ce particles, the addition of both DCCA and $NH_4OH$ to the spray solution was effective to prepare a spherical and dense structured YAG particles.

Liquefaction Characteristics of Polyethylene-Polypropylene Mixture by Pyrolysis at Low Temperature (Polyethylene-Polypropylene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Choi, Hong-Jun;Na, Byung-Ki;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2009
  • The low temperature pyrolysis of polyethylene (PE), polypropylene (PP) and polyethylene-polypropylene (PE-PP) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was carried out to investigate the synergy effect of PE-PP mixture. The pyrolysis time was from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Korea Institute of Petroleum Quality. The analysis of the product oils by GC/MS showed that no new component was detected and no synergy effect was made by mixing of PE and PP. Conversions and yields of PE-PP mixtures were linearly dependent on the mixing ratio of samples.

Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature (Polypropylene-Polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Kim, Chi-Hoi;Kim, Su-Ho;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The low temperature pyrolysis of polypropylene (PP), polystyrene (PS) and polypropylene-polystyrene (PP-PS) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was conducted to investigate the synergy effect of PP-PS mixture on the yield of pyrolytic oil. The pyrolysis time was varied from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The analysis of the product oils by GC/MS(Gas chromatography/Mass spectrometry) showed that new components were not detected by mixing of PP and PS. There was no synergy effect according to the mixing of PP and PS. Conversions and yields of PP-PS mixtures were linearly dependent on the mixing ratio of samples except for heavy oil yields. Heavy oil yields showed almost constant regardless of the mixing ratio.

Liquefaction Characteristics of Polyethylene-polystyrene Mixture by Pyrolysis at Low Temperature (Polyethylene-polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Lee, Bong-Hee;Kim, Su-Ho;Choi, Hong-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.495-502
    • /
    • 2008
  • To investigate the synergy effect on the pyrolysis of mixture of polyethylene(PE) and polystyrene(PS), the pyrolysis of PE, PS and the mixture of PE-PS was carried out in a batch reactor at the atmospheric pressure and $450^{\circ}C$. The pyrolysis time was from 20 to 80 mins. The liquid products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the distillation temperatures based on the petroleum product quality standard of Korea Institute of Petroleum Quality. The analysis of the product oils by GC/MS showed that the new components produced by mixing were not detected. The synergy effect according to mixing of PE and PS did not also appear. The conversion and yield of mixtures were in proportion to the mixing ratio of sample.