• Title/Summary/Keyword: Pyrolysis Gas

Search Result 419, Processing Time 0.034 seconds

Platinum Nano-Dispersion via In Situ Processing - Preparation and catalytic Property of Porous $CaZrO_3/MgO/Pt$ Nanocomposite

  • Yoshikazu;Hwang, Hae-Jin;Naoki Kondo;Tatsuki Ohji
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.163-167
    • /
    • 2001
  • A bulk porous $CaZrO_3/MgO$ composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of $PtO_2$. A mixture of $CaMg(CO_3)_2$(dolomite), $ZrO_2$, $PtO_2$ and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at $1100^{\circ}C$ for 2 h. The porous $CaZrO_3/MgO/Pt$ composite ($CaZrO_3/MgO$ : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous $CaZrO_3/MgO$ composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by $C_2H_4$) of the $CaZrO_3/MgO/Pt$ composite were investigated up to $900^{\circ}C$. In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by $C_2H_4$, respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and $de-NO_x$ in one component.

  • PDF

Chemical Analysis of Dolgorae-1 well Petroleum Source Rock (돌고래-1 공 석유근원암의 화학분석)

  • Lee, Sang-Hak;Yang, Moon-Yul
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.185-191
    • /
    • 1991
  • The chemical composition and characteristics of the source rock collected from Dolgorae-1 well in Korea continental shelf block VI( $35^{\circ}$ 18'N.L., $130^{\circ}$ 28'E) have been investigated. An oil show analyzer(OSA) has been used to determine the contents of gas, oil and total organic carbon(TOC). The average TOC value for the sample is found to be 0.59%. The OSA has also provided hydrogen index and $T_{max}$, the maximum temperature which generate maximum hydrocarbons from kerogen. From a $T_{max}$-hydrogen index diagram the type of organic matter in the source rock was estimated to be type III kerogen. The content of bitumen and its molecular weight have been determined by means of extraction method and gel permeation chromatograph, respectively. The physicochemical properties has been studied using X-ray diffraction spectrometer, IR spectrometer and thermogravimetric method. On the basis of the results obtained in the present work, the samples collected from Dolgorae-1 well are evaluated to be poor source rocks.

  • PDF

Y-TZP Fine Powder Preparation by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의한 Y-TZP 미립자의 합성)

  • 이정형;김복희;최의석;황재석
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.325-331
    • /
    • 1993
  • Aqueous solutions of metallic salts, ZrO(NO3)2.2H2O and Y(NO3)3.5H2O were used as raw materials to synthesize crystalline submicron spherical powders of Zr0.94Y0.06O1.97 with tetragonal crystal phase. Each aqueous solution was mixed on the magnetic stirrer to homogenize for 12 hours. The concentration of the mixed solutionwas changed from 0.01mol/$\ell$ to 0.1mol/$\ell$ calculated as the concentration of Zr0.94Y0.06O1.97. Ultrafine droplets of starting mixed solution were sprayed by the ultrasonic vibrator and carried into the furnace kept at 55$0^{\circ}C$, $650^{\circ}C$, 75$0^{\circ}C$ and 85$0^{\circ}C$ using carrier gas of air (10$\ell$/min) and pyrolysed to form Y-TZP fine powders. The results of this exeriment were as follows. 1) Synthesized powders were nonagglomerated and spherical type. 2) Particle size distribution was narrow between 0.1${\mu}{\textrm}{m}$ and 1${\mu}{\textrm}{m}$. 3) Forming reaction Y-TZP was finished above synthetic temperature 75$0^{\circ}C$. 4) As the synthetic temperature rised from 55$0^{\circ}C$ to 85$0^{\circ}C$, the mean particle size decreased from 0.35${\mu}{\textrm}{m}$ to 0.22${\mu}{\textrm}{m}$ in the concentration of starting solution with 0.02mol/$\ell$. 5) At 75$0^{\circ}C$ of synthetic temperature, the concentration changes of starting solution from 0.01mol/$\ell$ to 0.1mol/$\ell$ increased the mean particle size from 0.24${\mu}{\textrm}{m}$ to 0.38${\mu}{\textrm}{m}$. 6) Chemical compositions of each synthesized particle were homogeneous nearly.

  • PDF

Effect of Cooling Rate and Crystallizer Type on the Separation of Naphthalene Mixture by Layer Melt Crystallization (경막형 용융결정화에 의한 나프탈렌 혼합물의 분리에 관한 냉각속도와 결정화기 형태의 영향)

  • Kang, So-Rim;Koh, Joo-Young;Kim, Chul-Ung;Park, So-Jin
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.72-78
    • /
    • 2007
  • As a basic research fur the separation of effective components included in pyrolysis gas oil, the crystallization on each system of naphthalene with 2-methylnaphthalene, indene and 1-methylnaphthalene as impurity has been carried out in column and cold-finger type crystallizer, respectively. In crystallization operation, the purity of naphthalene has been a tendency of increase with decreasing of cooling rate and in the presence of impurity with lower melting point. In comparison of crystallizer types, naphthalene purity in column type crystallizer was a higher value than that in cold-finger type due to effective sweating operation after crystallization.

  • PDF

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat (C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구)

  • Kim, Young In;Lee, Soo Yong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-49
    • /
    • 2017
  • The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.

A Study on Multi-Stage Catalytic Ignitor for Hybrid Rocket Auto Ignition (하이브리드 로켓 자동점화를 위한 다단촉매점화기에 관한 연구)

  • Choi, Woojoo;Kim, Jincheol;Kwon, Minchan;Yoo, Yeongjun;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.117-119
    • /
    • 2017
  • The multi-stage catalytic igniter for hybrid rocket auto ignition is described in this paper. After charging the catalyst and pre-heating the first stage, the $N_2O$ was supplied at the first stage with the low mass flow rate, and then the $N_2O$ with the high flow rate was supplied into the second stage. Even though the $N_2O$ flow rate was high, it was decomposed by supplying the high temperature gas which was evolved from the $N_2O$ decomposition in the first stage. This multi-stage ignitor resulted in the decrease of the ignition time in comparison with the previous ignitor, and confirmed the possibility of $N_2O$ decomposition with the high flow rate using the multi-stage catalytic-ignition system.

  • PDF

The Study of Pyrolysis Characteristics of Dioxin Precursor Chlorophenol (다이옥신 전구물질인 Chlorophenol 의 열분해에 관한 연구)

  • Jeong, Tae-Seop;Kim, Jong-Guk;Kim, Kyoung-Soo;Yoon, Byeng-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.179-185
    • /
    • 2000
  • In this study, we examined the movement of chlorophenol as a precursor of the dioxin in the after-combustion to minimize the creation and emission of dioxin in a municipal waste incinerator. The CPs was injected to the electric incinerator in temperature $300{\sim}500^{\circ}C$, using $N_2$ gas to control the reaction time, The oxygen quantity supplied into the $CP_s's$ isomer combustion was added with the value of experience formula. When the space velocity in reactor was 60~80/sec, the removal efficiency of CP was obtained in the presence of Mo-V catalyst and non catalyst. The efficiency in non-catalyst was 74% to 80% mono-CP, di-CP 55~66%, tri-CP 50~58%, while mono-CP 90~99.9%, di-CP 96~97%, tri-CP 76~99% in a catalyst. Consequently, it was shown that these were 20~30% more efficienct than those.

  • PDF

The Characteristics of the Biochar with the Synthetic Food Waste and Wood Waste for Soil Contaminated with Heavy Metals (인공 음식물 혼합 폐기물 바이오차의 토양 중금속 흡착 가능성을 위한 특성 분석)

  • Baek, Ye-Seul;Lee, Jai-Young;Park, Seong-Kyu;Bae, Sunyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • When processing the biomass by Hydrothermal carbonization (HTC), a slow pyrolysis process, it produces bio-gas, biooil, and biochar. Among these end products, biochar is known for isolating or storing carbon and being used as a soil amendment. In this study, the characteristics of biochar generated by HTC at $250^{\circ}C$ for 1 hour, 2 hours, 3 hours, and 20 hours with synthetic food wastes and wood wastes were analyzed for potential uses in soil contaminated with heavy metals. The yield of biochar (weight %) increased when the ratio of wood wastes increased and showed a decreasing tendency as reaction time increased. Elemental analysis of biochar based on various conditions showed a maximum of 70% carbon (C) content. The carbon content showed an increasing tendency with the increase of wood wastes. Iodine adsorption test was peformed to determine the optimum reaction condition, which was 15% wood waste for mixing ratio and 2 hours for reaction time. Using biochar generated at the optimum condition, its capability of adsorbing heavy metals (Cd, Cu, Pb, Zn, Ni) was evaluated. It was concluded that lead (Pb) was removed efficiently while zinc (Zn) and nickel (Ni) were hardly adsorbed by biochar.

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

열분해법을 이용한 실리콘 나노입자 형성과정 수치해석 연구

  • U, Dae-Gwang;Ha, Su-Hyeon;Kim, Myeong-Jun;Hang, Zhang;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.117-117
    • /
    • 2010
  • 나노입자 제조 기술이 점차 발전하면서 금속산화물, 반도체용 및 태양전지용, 신소재 등 다양한 응용분야에 사용하고 있다. 따라서 이와 같은 나노입자 제조방법으로는 펄스 레이저 용사법(pulsed laser ablation), 플라즈마 아크 합성법(plasma arc synthesis), 열분해법(pyrolysis), plasma-enhanced chemical vapor deposition (PECVD)법 등과 같은 기상공정이 많이 사용되고 있다. 기상공정은 기존의 공정에 비해 고순도 입자의 대량 생산, 다성분 입자의 화학적 균질성 유지, 비교적 간단하고 깨끗한 공정 등의 장점을 가지고 있다. 기상공정에서 일반적인 입자 형성 메커니즘은 기체 상태의 화학 물질이 물리적 공정 혹은 화학 반응에 의해 과포화상태에 도달하게 되며, 이 때 동질 핵생성(homogeneous nucleation)이 일어나고 생성된 핵(nuclei)에 기체가 응축되고 충돌, 응집하면서 입자는 성장하게 된다. 열분해법은 실리콘 나노입자를 생산하는 기상공정 중 하나이다. 일반적으로 열분해 공정은 지속적으로 열이 가해지는 반응기 내에 반응기체인 $SiH_4$을 주입하고, 운반기체는 He, $H_2$, Ar, $N_2$ 등을 사용하였을 때, 높은 열로 인해 $SiH_4$가 분해되며, 이 때 가스-입자 전환 현상(gas to particle conversion)이 일어나 실리콘 입자가 형성된다. 그러나 입자 형성과정은 $SiH_4$ 농도, 유량, 작동 압력, 온도 등 매우 다양한 요소에 영향을 받는다. 고, 복잡한 화학반응 메커니즘에 의해 명확히 규명되지는 못하고 있다. 이에 본 연구에서는 복잡한 화학반응을 해석하는 상용코드 CHEMKIN 4.1.1을 이용하여 열분해 반응기 내에서의 실리콘 입자 형성, 성장, 응집, 전송 모델을 만들고 이를 수치해석하였다. 표면 반응, 응집, 전송에 의한 입자 성장 메커니즘을 포함하고 있는 aerosol dynamics model을 method of moment법으로 해를 구하였으며, 이를 실험 결과와 비교하여 모델링을 검증하였다. 또한 반응기의 온도, 압력, 가스 농도, 유량 등의 요소를 고려하여 실리콘 나노입자를 형성하는 최적의 조건을 연구하였다.

  • PDF