• Title/Summary/Keyword: Pyrolysis/GC/MS

Search Result 109, Processing Time 0.024 seconds

The Study of Instrumental Analysis of Deposits on Paper Machine and Holes/spots in Paper (제지공정 침착이물질 및 종이내 불순물성분의 기기분석적 고찰)

  • 마금자;이복진
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.7-16
    • /
    • 1997
  • The constituents of deposits on paper machine and holes/spots in paper have been studied by consequently a combination of analytical techniques, such as FTIR, Py-GC-MS, and. EDS. FTIR spectroscopy was used prior to Py-GC-MS and EDS analysis, as preliminary analysis technique. The analysis of organic components were carried out with the use of a pyrolysis unit connected to a GC-MS, and inorganic components in ash were analysed by SEM equipped with an EDS analyzer after pyrolysis at 59$0^{\circ}C$. The deposits on the dryer section were complex pitch, which was the mixture of the organic contents of fatty acid ester and starch, and the inorganic contents of talc, clay, and calcium carbonate. The complex pitch was estimated to come from the coated broke. We knew the deposits on the metering rod of sym-sizer were associated with the interaction of unstable AKD and CaCO$_3$. The compositions of holes or spots varied considerably and were associated with chemical interaction within the system. The holes, spots, and blotches in the finished paper were PE and PP that were streamed out from pulp sources, complex pitch that were caused by the interaction of the different additives in the system, polymer such as flexible PVC that used for the prop of palette, and hot melt as adhesives that came from the inadequate handling of broke. In addition, we identified that poly(caprolactam) which is used for forming fabrics or press felts, could be mixed with the raw materials by accident and results in streak on coating.

  • PDF

Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos)

  • Bardalai, Monoj;Mahanta, Dimbendra Kumar
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.180-187
    • /
    • 2016
  • In the present work, bael shell (aegle marmelos) is used as the feedstock for pyrolysis, using a fixed bed reactor to investigate the characteristics of the pyrolysis oil. The product yields, e.g., liquid, char and gases are produced from the biomass at different temperatures with the particle size of 0.5-1.0 mm, at the heating rate of $150^{\circ}C/min$. The maximum liquid yield, i.e., 36.23 wt.%, was found at $5500^{\circ}C$. Some physical properties of the pyrolysis oil such as calorific value, viscosity, density, pH, flash point and fire point are evaluated. The calorific value of the bael shell pyrolysis oil was 20.4 MJ/kg, which is slightly higher than the biomass, i.e., 18.24 MJ/kg. The H/C and O/C ratios of the bio-oil were found as 2.3 and 0.56 respectively, which are quite higher than some other bio-oils. Gas Chromatography and Mass Spectroscopy (GC-MS) and Fourier Transform Infra-red (FTIR) analyses showed that the pyrolysis oil of bael shell is mostly composed by phenolic and acidic compounds. The results of the properties of the bael shell pyrolysis oil reveal the potential of the oil as an alternate fuel with the essential upgradation of some properties.

The analysis of products from base-catalyzed depolymerization of kraft lignin (크라프트 리그닌의 염기 촉매 분해(BCD)에 의한 부산물의 조성 분석)

  • Kim, Seok Ju;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.583-593
    • /
    • 2013
  • The based-catalyzed depolymerization (BCD) of kraft lignin isolated from black liquor which the chemical pulping of a mixture of various Southeast Asia hardwood chips was carried out in a batch reactor in the presence of different NaOH concentrations with supercritical methanol. The S:G ratio of the kraft lignin determined by pyrolysis-GC/MS analysis turned out roughly 1.4:1 and main products were vanillic acid, syringol and 3-methoxy catechol. The diethyl ether extracts as phenolic monomers from BCD reaction were produced similar yield among different NaOH concentrations. The 21 compounds were identified by GC/MS analysis in all experiments and major products were catechol, 3-methoxycatechol, 4-methylcatechol, syringol and isovanillic acid. However, it had been shown to be different monomer contents depending on the dosage of NaOH. Catechol, 4-methylcatechol and 3-methoxycatechol were shown to be the dominant monomer from BCD reaction using 7.5 and 3.25% of NaOH concentration whereas syringol, isovanillic acid, 3-methoxycatechol and 4-methylcatechol were determined to be the most typical products under the condition of 1.63% NaOH.

Analysis of Petrological Characteristics and Lacquer Gilding Materials of the Stone Buddha Head Excavated from the Temple Site No.4 of Yaksugok-Valley in Namsan Mountain, Gyeongju (경주 남산 약수곡 제4사지 출토 석재 불두의 암석학적 특징과 옻칠 도금 재료 분석)

  • Yu Jia;Lee Myeongseong;Lee Eunwoo
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.47-70
    • /
    • 2023
  • In 2019, the first excavation survey was conducted at the Temple Site No. 4 of Yaksugok Vally in Namsan Mountain, Gyeongju to determine the original location of the headless stone Buddha statue and the structure of the temple site. The survey excavated a stone Buddha head that was confirmed in a comparative analysis to be petrologically and mineralogically identical to a headless stone seated Buddha statue found derelict nearby. Traces of gold leaf and black adhesive were found on a portion of the right side of the face of the Buddha head buried in the ground. Since it is exceedingly rare for lacquer and gilding techniques to have been applied to a large stone Buddha statue without a base layer, this study examines the gilding techniques of the time by analyzing the characteristics of the materials used. In this process, the structure of the gold foil was observed through analytical microscopy and scanning electron microscopy with energy dispersive X-ray spectrometry, and the gold (Au) component was identified. As a result of analyzing the black adhesive using pyrolysis-gas chromatograph/mass spectrometry (pyrolysis-GC/MS), pyrolysis compounds such as hydrocarbons, fatty acids, catechol, and catechol oxidation products were detected. This was identical to the characteristics identified upon analyzing lacquer collected from species of lacquer tree whose main component is urushiol. Therefore, it was confirmed that the stone Buddha head excavated from the Temple Site No. 4 of Yaksugok Valley was separated from a nearby stone seated Buddha statue, and that the gold foil was attached using lacquer sap collected from lacquer trees, which grow in Korea, China, and Japan.

Comparison of Pyrolysis Patterns of Different Tobacco Leaves by Double-Shot Pyrolysis-GC/MSD Method

  • Lee, Chang-Gook;Lee, Jae-Gon;Jang, Hee-Jin;Kwon, Young-Ju;Lee, Jang-Mi;Kwag, Jae-Jin;Kim, Soo-Ho;Sung, Yong-Joo;Shin, Chang-Ho;Kim, Kun-Soo;Rhee, Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.2
    • /
    • pp.94-102
    • /
    • 2008
  • In this paper, we describe our study on the characterization of tobacco leaves by their pyrolysis patterns. Two kinds of tobacco leaves were pyrolyzed and analyzed by Double-Shot Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py-GC/MS) methods. Three grades of Korean flue-cured tobacco leafsuch as B1O, AB3O, CD3L and burley tobacco leaves such as B1T, AB3T, CD3W were pyrolyzed with six discrete but stepwise heating temperature ranges, those are from 100$^{\circ}C$ to 150$^{\circ}C$, 150$^{\circ}C$ to 200$^{\circ}C$, 200$^{\circ}C$ to 250$^{\circ}C$, 250$^{\circ}C$ to 300$^{\circ}C$, 300$^{\circ}C$ to 350$^{\circ}C$ and finally from 350$^{\circ}C$ to 400$^{\circ}C$. Using the resultant 52 pyrolytic components identified in the programs as components, principal component analysis (PCA) showed statistical classification between flue-cured and burley tobacco lamina. Among six pyrolysis temperature ranges, the best discrimination was achieved at the temperature range from 250$^{\circ}C$ to 300$^{\circ}C$ and from 300$^{\circ}C$ to 350$^{\circ}C$.

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties (은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구)

  • In-Jun Hwang;Jae-Rak Jeon;Jinsoo Kim;Seung-Soo Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-216
    • /
    • 2023
  • Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand (Mn/sand 촉매를 활용한 폴리프로필렌 촉매 열분해 연구)

  • Soo Hyun Kim;Seung Hun Baek;Roosse Lee;Sang Jun Park;Jung Min Sohn
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • This study was conducted to obtain basic process simulation data before conducting pyrolysis experiments for the development of a thermochemical conversion system by recirculation of heat carrier and gases thereby. In this study, polypropylene (PP) was used as a pyrolysis sample material as an alternative to waste plastics, and fluid sand was used as a heat transfer medium in the system. Manganese (Mn) was chosen as the catalyst for the pyrolysis experiment, and the catalyst pyrolysis was performed by impregnating it in the sand. The basic properties of PP were analyzed using a thermogravimetric analyzer (TGA), and liquid oil was generated through catalytic pyrolysis under a nitrogen atmosphere at 600℃. The carbon number distribution of the generated liquid oil was confirmed by GC/MS analysis. In this study, the effects of the presence and the amount of Mn loading on the yield of liquid oil and the distribution of hydrocarbons in the oil were investigated. When Mn/sand was used, the residue decreased and the oil yield increased compared to pyrolysis using sand alone. In addition, as the Mn loading increased, the ratio of C6~C9 range gasoline in the liquid oil gradually increased, and the distribution of diesel and heavy oil with more carbon atoms than C10 in the oil decreased. In conclusion, it was found that using Mn as a catalyst and changing the amount of Mn could increase the yield of liquid oil and increase the gasoline ratio in the product.

Characterization of Lignin Structure in Chemithermomechanical Pulp Predicting Photo-Yellowing Level by Pyrolysis-Gas Chromatography with Tetrabuthylammonium Hydroxide

  • Ona, Toshihiro;Yoshioka, Aki;Kojima, Yasuo;Seino, Teruyuki;Mizumoto, Miho;Nozaki, Hideo;Ishida, Yasuyuki;Ohtani, Hajime
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.173-176
    • /
    • 2006
  • Pyrolysis-gas chromatography (Py-GC) in the presence of organic alkali of tetrabutylammonium hydroxide (TBAH) was applied to characterize the polyphenol fragments with a carbonyl group causing different magnitude of photo-yellowing in chemithermomechanical pulp (CTMP) papers. Two different origin of CTMP papers prepared from different individuals of Eucalyptus globulus trees showing high and low yellowing after photo-irradiation was compared before photo-irradiation. As a result, 7 peaks assigned to a series of phenol compounds with a carbonyl group, derived mainly from lignin, gave significant amount of phenol compounds with a carbonyl group for the paper sample of latent high yellowing, i.e., butoxy-and syringaldehyde, butoxy-and syringylacetone, butoxy-acetoguaiacone, butoxy-acetosyringone, butoxy-acetoethylsyringone, 3-methoxy-4-butoxy butyl ester, and 3,5-dimethoxy-4-butoxy butyl ester, using Py-GC/mass spectrometry (MS). The Py-GC method combined with TBAH successfully characterized polyphenol fragments with a carbonyl group causing differ high photo-yellowing in CTMP papers using a microgram order of samples.

  • PDF

Liquefaction Characteristics of Polyethylene-polystyrene Mixture by Pyrolysis at Low Temperature (Polyethylene-polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Lee, Bong-Hee;Kim, Su-Ho;Choi, Hong-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.495-502
    • /
    • 2008
  • To investigate the synergy effect on the pyrolysis of mixture of polyethylene(PE) and polystyrene(PS), the pyrolysis of PE, PS and the mixture of PE-PS was carried out in a batch reactor at the atmospheric pressure and $450^{\circ}C$. The pyrolysis time was from 20 to 80 mins. The liquid products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the distillation temperatures based on the petroleum product quality standard of Korea Institute of Petroleum Quality. The analysis of the product oils by GC/MS showed that the new components produced by mixing were not detected. The synergy effect according to mixing of PE and PS did not also appear. The conversion and yield of mixtures were in proportion to the mixing ratio of sample.

Formation of Pyro-products by the Pyrolysis of Monobromophenols

  • Na, Yun-Cheol;Seo, Jung-Ju;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1276-1280
    • /
    • 2003
  • Thermal behavior of bromphenols was investigated by direct pyrolysis at high temperature. The thermal degradation products formed by the pyrolysis of mono-bromophenols (o-, m-, and p-) were identified by gas chromatography-mass spectrometry. During the pyrolysis reactions, several kinds of dioxins and furans were produced, and the relative ratio of pyro-products was dependent on the substituted position of bromine in phenolic structure due to the effect of symmetry and steric hindrance. The formation of dioxins can be explained by the phenoxy radical addition and Br atom elimination at an ortho-carbon site on phenolic structure. On the other hand, the formation of furans can be explained by the ortho-ortho carbon coupling of phenoxy radicals at unsubstituted sites to form o, o'-dihydroxydiphenyl intermediate via its keto-tautomer, followed by $H_2O$ elimination. The pyrolysis temperature has also a substantial effect on the dimerized products quantities but little effect on the type of pyro-products. Moreover, the formation mechanism of pyro-products was suggested on the basis of products identified.