• Title/Summary/Keyword: Pyrolusis

Search Result 2, Processing Time 0.014 seconds

The Analysis of the temperature distribution in Carbon/Phenolic composite by thermal decomposition parameters (열분해 특성상수를 활용한 탄소/페놀릭 복합재료의 온도분포 해석)

  • Kim Yun-Chul;Park Young-Che
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.45-49
    • /
    • 2006
  • The thermal degradation of carbon fiber reinforced phenolic composites have been studied at high temperature by using thermogravimetry analysis (TGA). The aim is that ultimately it can be used to predict the service temperature during solid rocket firing for any level and type of mechanical loading and to recommend protection systems required. To simulate the high heating rate in firing condition, the modified thermal decomposition constant (1000 K/min) was used for FEM analysis. The temperature distribution and the thickness of thermal decomposition were estimated well and we could predict the thickness of thermal decomposition within ${\pm}1mm$.

  • PDF

Determination of Thermal Decomposition Parameters for Ablative Composite Materials (삭마용 내열 복합재료의 열분해 반응인자 결정)

  • Kim Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.22-25
    • /
    • 2005
  • The thermal degradation of carbon/phenolic composite have been studied at high temperature by using thermogravimetric (TGA). A heating .ate of 5, 10, 15, 30 and $50^{\circ}C/min$ was used for the determination of thermal decomposition parameters of composite materials at high-temperature service. It has been shown that as the heating rates is increased, the peak decomposition rates are occur at higher temperature. Based on results of thermogravimetric analysis, the pyrolysis process is analyzed and physical and mathematical models for the process are proposed. The thermal analysis also has been conducted using transient heat conduction and the in-depth temperature distribution and the density profile were evaluated along the solid rocket nozzle. As a future effort the thermal decomposition parameter determined in this investigation will be used as input to thermal and mechanical analysis when subjected to solid rocket propulsion environment.

  • PDF