• Title/Summary/Keyword: Pyro-metallurgical process

Search Result 6, Processing Time 0.018 seconds

Study on the Pyro-metallurgical Process for Recovery of Valuable Metal in the Sludge Originated from PCB Manufacturing Process (PCB 제조 공정 중 발생한 슬러지 내 유가금속 회수를 위한 건식야금 공정에 관한 연구)

  • Han, Chulwoong;Son, Seong Ho;Lee, Man-Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.87-95
    • /
    • 2019
  • This study investigated the effect of process variables for smelting of recovery of valuable metal in the sludge generated from PCB. The moisture and organics in the sludge was removed by preteatment process. The phase equilibria and slag system was selected by thermodynamic phase calculation program and the process variable of pyro-metallurgical process such as reductant. Smelting temperature and holding time for a recovery of valuable metal was studied.

Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process (인쇄회로기판 제조공정 중 발생한 슬러지 내 건식환원 처리를 통한 구리 회수를 위한 슬러지 분석 및 열역학적 계산)

  • Han, Chulwoong;Kim, Young-Min;Kim, Yong Hwan;Son, Seong Ho;Lee, Man Seung;Lee, Ki Woong
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.85-96
    • /
    • 2017
  • In this study, we tried to select a slag system capable of pyro-metallurgical process through analysis of sludge generated from PCB plating and etching process solution. Based on this, the possibility of extracting valuable metals in the sludge was studied by experimental and thermodynamic approaches. The sludge was dried at $100{\sim}500^{\circ}C$ and the morphology, chemical composition and phase of the sludge were analyzed. The possibility of pyro-metallurgical process of sludge was investigated through thermodynamic approach using FactSage software.

Pyro-metallurgical Treatment of used OA Parts for the Recovery of Valuable Metals (유가금속(有價金屬) 회수(回收)를 위한 PCB 스크랩의 건식처리기술(乾式處理技術))

  • Shin, Dong-Yeop;Lee, Sang-Dong;Jeong, Hyeon-Bu;You, Byung-Don;Han, Jeong-Whan;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.46-54
    • /
    • 2008
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals. In this study, pyro-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analysis were made. 15 mass %$Al_2O_3-45$ mass %CaO-40 mass %$SiO_2$ and 32 mass %$SiO_2-20$ mass %$Al_2O_3-38$ mass %CaO-10 mass %MgO, were chosen as basic slag compositions which are determined based on the quantitative analysis of PCB scrap. During experiments a super kanthal rotating furnace was used to melt and separate metallic components. Moreover the revolution effect on was the recovery of valuable metals from PCB scrap also investigated.

Total value recovery in the copper smelting and refining operations

  • Kim Joe. Y.;Kong Bong S.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.590-597
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and $Dor\'{e}$ furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyro-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

Analyses of Physical Properties of Copper-contained Sludge Pelletized for Applied Pyro-metallurgical Process (건식제련용 동 함유 슬러지 펠렛 제조 및 물리적 특성평가)

  • Kim, Suyun;Kim, Youngjin;Kim, Seunghyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • The pelletizing of printed circuit board (PCB) sludge was researched for copper recovery in pyrometallurgical process. This pelletizing was carried out by using self-manufactured compression-type apparatus after pre-treatments (drying, water scrubbing, size classification) were proceeded. The physical properties (compression strength and drop-breakage test) were tested with a change of sludge sizing and the number of compression. In the case of using the undersized sludge of #140, its properties were improved to 0.6 MPa and 9.3 times. Moreover, they increased to 0.82 MPa and 19.0 times by using the #140 ~ 325 sludge. These imply that the packing density increases due to the elimination of large-sized sludge (#140), and also the weight of required binder decreases by the removal of fine-sized sludge (#325).

Study on the Copper Electro-refining from Copper Containing Sludge (저품위 동(Cu) 함유 슬러지로부터 동 전해정련에 관한 연구)

  • Lee, Jin-Yeon;Son, Seong Ho;Park, Sung Cheol;Jung, Yeon Jae;Kim, Yong Hwan;Han, Chul Woong;Lee, Man-seung;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.84-90
    • /
    • 2017
  • The electro-refining process was performed to recovery high purity copper from low grade copper containing sludge in sulfuric acid. The surface morphologies and roughness of electro-refining copper were analyzed with variation of the type and concentration of organic additives, the best surface morphology was obtained 5 ppm of the gelatin type and 5 to 10 ppm of the thiol type organic additive. The crude metal consisted of copper with 86.635, 94.969 and 99.917 wt.%, several impurity metals of iron, nickel, cobalt and tin by pyro-metallurgical process. After electro-refining process, the purity of copper increases to 3N or 4N grade. The impurity concentrations and copper purities of copper crude metals, electrolyte and electro-refining copper were analyzed using ICP-OES, the electro-refining time and purity of copper crude metal to recover 4N grade copper were deduced.