• Title/Summary/Keyword: Pyridinium

Search Result 129, Processing Time 0.028 seconds

Stability to the Dispersion Solvent of (N-docosyl pyridinium)-TCNQ(1:2) Complex for Langmuir-Blodgett Technique (Langmuir-Blodgett법을 위한 (N-docosyl pyridinium)-TCNQ(1:2)착체의 분산용매 중에서의 안정성)

  • Shon, Byoung-Chung;Kim, Dong-Sik;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.41-45
    • /
    • 1990
  • A Stability to the dispersion solvent, which is acetonitrile, dichloromethane, benzene, chloroform and acetonitrile-benzene(1:1,v/v) of {N-docosyl pyridinium)-TCNQ(1:2)complex was investigated by U.V Spectrophotometer and was confirmed stabilized on acetonitrile, the dichloromethane and acetonitrile-benzene (1:1,v/v) for seven hours. Using $CdCl_2$buffer solution as subphase for LB films deposition, it was achived successively to fabricate the Y-type LB films of (N-docosyl pyridinium)-TCNQ(1:2)complex. For the sake of verifying the deposition of LB films, U.V is measured by variation of nominal layer number.

Synthesis and Characterization of Substituted Pyridine Complexes of Molybdenum (II). Substituted Pyridinium Salts of Oxopentachloromolybdates (V) (몰리브덴의 피리딘계 착물합성과 그 성질 (제2보). 옥소오클로로몰리브덴 (V) 의 치환피리딘늄염)

  • Sang Oh Oh;Chang Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.263-269
    • /
    • 1981
  • The substituted pyridinium salts of oxochloromolybdates(V) have been prepared characterized by visible and infrared spectra, and magnetic moments. The electrical conductance of aqueous solutions of substituted pyridinium salts have been measured over a range of concentrations. The results indicate that the complex anions are monomeric in the solid. The magnetic moments of the complexes are similar to the spin-only values. Substituted pyridines are present as pyridinium cation in solid state.

  • PDF

The Effect of Temperature on the Critical Micelle Concentration of Cationic Surfactant for Chemical Dispersants (유처리제용 양이온 계면찰성제의 임계미셀농토에서 온도의 효과)

  • kim, Yeoung-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.145-148
    • /
    • 2008
  • Cationic surfactant can be used as cosmetics and chemical dispersants. The variation of critical micelle concentration (CMC) with temperature over the range $40^{\circ}C$ to $60^{\circ}C$ for N-octadecyl pyridinium bromide was measured by drop methods. Thermodynamic quantities such as free energy, enthalpy, entropy and heat capacity for micellization of N-octadecyl pyridinium bromide in water were calculated by fourth-degree polynominal equation In the result, free energy change was decreased generally by the increment of temperature.

  • PDF

Preparation and Application of Anion-Exchange Membrane having Low Water-Splitting Capability (저 물분해 특성을 가진 음이온 교환막의 제조 및 응용)

  • Moon-Sung Kang;Yong-Jin Choi;Seung-Hyeon Moon
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.54-63
    • /
    • 2003
  • The Preparation and electrochemical characterization of anion-exchange membranes containing pyridinium groups were performed. As a result, the pyridinium membranes showed good electrochemical properties, comparable to those of the commercial membranes, with electrical resistance of less than $3.0 {\Xi}cm^2$ in a 0.5 mol $dm^{-3}$ NaCl and high ionic permselectivity (the transport number of $Cl^-$ ions being 0.97). Moreover, water splitting in the membranes containing pyridinium group was about two or three order of magnitude lower than those in the commercial membranes (e.g. AM-1, Tokuyama Crop., Japan) at the same current density because the resonance effedt in the quaternary aromatic pyridinium group contributed to their molecular stability. In addition, the electrodialytic properties of the pyridinium membranes were evaluated in a semi-pilot scale.

L-B막을 위한 (N-alkyl pyridinium)-TCNQ 착제의 합성

  • 정순욱;황교현;김동식;손병청;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.108-109
    • /
    • 1990
  • For the purpose of fabricating of L-B Films, (N-alkyl pyridinium)-TCNQ(1:1) complex is synthesized. This complex is verified by U.V, I.R and elemental analyzer.

Novel Pyridinium Iodide Containing Siloxane High Performance Electrolyte for Dye-Sensitized Solar Cell

  • Lee, Soonho;Jeon, Youngtae;Lim, Youngdon;Cho, Younggil;Lee, Sangyoung;Kim, Whangi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2583-2588
    • /
    • 2013
  • A new type of solid and gel-state ionics based on siloxane pyridinium iodides was synthesized and used as electrolytes in dye-sensitized solar cells. The resulting electrolytes were characterized by $^1H$ NMR spectroscopy, TGA and diffusion coefficient. The synthesized siloxane pyridinium iodide electrolytes have characteristics of different chain length of siloxane moieties. The ion conductivities were given 2.7-3.2 S/cm. Among the three SiDPIs based electrolytes, DSSC employing the SiDPI2 gives an open circuit voltage of 0.704 V, a short-circuit current of 15.85 $mA/cm^2$ and conversion efficiency of 6.8% under light intensity of 100 $mW/cm^2$. In addition, the performance of the DSSCs showed relatively reasonable compared with the propylpyridinium iodide (PPI) electrolyte.

Kinetic Study using Ultrasonic Technique on the Dissociation-Recombination Reaction between Micelle and Counter-ion in Dodecyl Pyridinium Chloride Solution (超音波를 利用한 Dodecyl Pyridinium Chloride 水溶液中의 미셀과 반대이온 사이의 解離-再結合反應의 反應速度論的 硏究)

  • Kun Moo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.193-197
    • /
    • 1976
  • The ultrasonic absorption has been measured in aqueous solution of dodecyl pyridinium chloride (DPC) at $20^{\circ}C$ over the frequency range of 0.1${\sim}$90 Mc.The excess absorption was observed only in solutions in which the concentration was higher than the critical micellar concentration(cmc). The mechanism for this feature was attributed to the reaction $M_2\;{\rightleftharpoons}\;M_1\;+\;1.2Cl^-$ Where $M_2$ and $M_1$ and M1 are two types of micelle. The rate constants of the forward and the reverse reactions were $6.6{\times}10^5 sec^{-1}\;and\;2.7{\times}10^11sec^{-1}mol^{-1.2}$respectively. Some kinetic charateristics including the free energy, enthalpy and entropy were calculated.

  • PDF

A Simple $H\ddot{u}ckel$ Approach to Intramolecular Photocyclization Reaction of N-(2-Chlorobenzyl)-Pyridinium, N-(Benzyl)-2-Chloropyridinium, and N-(2-Chlorobenzyl)-2-Chloropyridinium Salts

  • Lee, Gang-Ho;Park, Yong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.857-860
    • /
    • 1994
  • We have calculated the ${\pi}$-electron density, atom self-polarizability, and free valence on each atom of N-(2-chlorobenzyl)-pyridinium, N-(benzyl)-2-chloropyridinium, and N-(2-chlorobenzyl)-2-chloropyridinium salts using a simple Huckel method in order to discuss their intramolecular photocyclization reaction in a qualitative method. Our calculation qualitatively predicts that photocyclization occurs through forming radicals as a reaction intermediate by breaking a C-Cl bond after photoexcitation into a triplet state via intersystem crossing from an initially excited singlet state. We noticed that this C-Cl bond breaking is aided by ${\pi}$-complex formation between a chlorine atom and the ${\pi}$ -electrons of the neighboring ring in the triplet state and a stronger ${\pi}$-complex bond makes C-Cl bond breaking, i.e., radical formation, much easier. A chlorine atom will form a stronger ${\pi}$ -complex bond to a benzyl ring of N-(benzyl)-2-chloropyridinium than a pyridinium ring of N-(2-chlorobenzyl)-pyridinium because the former can donate its ${\pi}$-electron more easily than the latter. The chlorine at position 15 of N-(2-chlorobenzyl)-2-chloropyridinium salt in the excited state also provides its ${\pi}$-electron to the benzyl ring. So this ${\pi}$-electron can increase the bond strength of the $\pi-complex.$ Therefore, the strength of ${\pi}$-complex follows the order of N-(2-chlorobenzyl)-2-chloropyridinium, N-(benzyl)-2-chloropyridinium, and N-(2-chlorobenzyl)-pyridinium salts and thus the radical formation rate. This provides us with an intramolecular photocyclization reaction rate of the same order as given above.