• 제목/요약/키워드: Pyridine-N-Oxide

검색결과 15건 처리시간 0.023초

Reduction of Representative Organic Functional Groups with Gallane-Trimethylamine

  • 최정훈;오영주;김민정;황북기;백대진
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권3호
    • /
    • pp.274-280
    • /
    • 1997
  • The rates and stoichiometry of the reaction of gallane-trimethylamine with selected organic compounds containing representative functional groups were examined in tetrahydrofuran solution under standardized conditions (THF, 0 ℃). And its reducing characteristics were compared with those of aluminum hydride-triethylamine(AHTEA). The rate of hydrogen evolution from active hydrogen compounds varied considerably with the nature of the functional group and the structure of the hydrocarbon moiety. Alcohols, phenol, amines, thiols evolved hydrogen rapidly and quantitatively. Aldehydes and ketones were reduced moderately to the corresponding alcohols. Cinnamaldehyde was reduced to cinnamyl alcohol, which means that the conjugated double bond was not attacked by gallane-trimethylamine. Carboxylic acids, esters, and lactones were stable to the reagent under standard conditions. Acid chlorides also were rapidly reduced to the corresponding alcohols. Epoxides and halides were inert to the reagent. Caproamide and nitrile were stable to the reagent, whereas benzamide was rapidly reduced to benzylamine. Nitropropane, nitrobenzene and azoxybenzene were stable to the reagent, whereas azobenzene was reduced to 1,2-diphenylhydrazine. Oximes and pyridine N-oxide were reduced rapidly. Di-n-butyl disulfide and dimethyl sulfoxide were reduced only slowly, but diphenyl disulfide was reduced rapidly. Finally, sulfones and sulfonic acids were inert to the reagent under the reaction.

Reducing Characteristics of Potassium Tri-sec-butylborohydride

  • Yoon, Nung-Min;Hwang, Young-Soo;Yang, Ho-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권4호
    • /
    • pp.382-388
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium tri-sec-butylborohydride ($K_s-Bu_3BH$) with selected organic compounds containing representative functional groups were determined under the standard conditions (0$^{\circ}C$, THF) in order to define the characteristics of the reagent for selective reductions. Primary alcohols evolve hydrogen in 1 h, but secondary and tertiary alcohols and amines are inert to this reagent. On the other hand, phenols and thiols evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of norcamphor gives 99.3% endo- and 0.7% exo-isomer of norboneols. The reagent rapidly reduces cinnamaldehyde to the cinamyl alcohol stage and shows no further uptake of hydride. p-Benzoquinone takes up one hydride rapidly with 0.32 equiv hydrogen evolution and anthraquinone is cleanly reduced to the 9,10-dihydoxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively, however further reduction does not occur. Anhydrides utilize 2 equiv of hydride and acyl chlorides are reduced to the corresponding alcohols rapidly. Lactones are reduced to the diol stage rapidly, whereas esters are reduced moderately (3-6 h). Terminal epoxides are rapidly reduced to the more substituted alcohols, but internal epoxides are reduced slowly. Primary and tertiary amides are inert to this reagent and nitriles are reduced very slowly. 1-Nitropropane evolves hydrogen rapidly without reduction and nitrobenzene is reduced to the azoxybenzene stage, whereas azobenzene and azoxybenzene are inert. Cyclohexanone oxime evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine and quinoline are reduced slowly, however pyridine N-oxide takes up 1.5 equiv of hydride in 1 hr. Disulfides are rapidly reduced to the thiol stage, whereas sulfide, sulfoxide, sulfonic acid and sulfone are practically inert to this reagent. Primary alkyl bromide and iodide are reduced rapidly, but primary alkyl chloride, cyclohexyl bromide and cyclohexyl tosylate are reduced slowly.

Reaction of Lithium n-Butylborohydride with Selected Organic Compounds Containing Representative Functional Groups

  • Chong-Suh Pyun;Jong-Chan Son;Nung-Min Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권1호
    • /
    • pp.3-9
    • /
    • 1983
  • Lithium n-butylborohydride was prepared from borane-dimethylsulfide (BMS) and n-butyllithium, and the approximate rates and stoichiometrics of its reactions with selected organic compounds containing representative functional groups were studied in THF at room temperature. Phenol and benzenetiol liberated hydrogen quickly and quantitatively, and the reactions of primary alcohols, 2,6-di-ter-butylphenol and 1-hexanethiol liberated hydrogen quantitatively within 3 hrs, whereas the reactions of secondary and tertiary alcohols were very slow. Aldehydes and ketones were reduced rapidly and quantitatively to the corresponding alcohols. Cinnamaldehyde utilized 1 equiv. of hydride rapidly, suggesting the reduction to cinnamyl alcohol. Carboxylic acids evolved 1 equiv. of hydrogen rapidly and further reduction was not observed. Anhydrides utilized 2 equiv. of hydride rapidly but further hydride uptake was very slow, showing a half reduction. Acid chlorides were reduced to the alcohol stage very rapidly. All the esters examined were reduced to the corresponding alcohol rapidly. Lactones were also reduced rapidly. Expoxides took up 1 equiv. of hydride at a moderate rate to be reduced to the corresponding alcohols. Nitriles and primary amides were inert to this hydride system, whereas tertiary amide underwent slow reduction. Nitroethane and nitrobenzene were reduced slowly, however azobenzene and azoxybenzene were quite inert. Cyclohexanone oxime evolved 1 equiv. of hydrogen rapidly, but no further reduction was observed. Phenyl isocyanate and pyridine N-oxide were proceeded slowly, showing 1.74 and 1.53 hydride uptake, respectively in 24 hours. Diphenyl disulfide was reduced rapidly, whereas di-n-butyl disulfide, sulfone and sulfonic acids were inert or sluggish. n-Hexyl iodide and benzyl bromide reacted rapidly, but n-octyl bromide, n-octyl chloride, and benzyl chloride reacted very slowly.

초임계 이산화탄소를 이용한 웨이퍼의 건식 식각에서 알콜 첨가제의 효과 (Effect of Alcohols on the Dry Etching of Sacrificial SiO2 in Supercritical CO2)

  • 김도훈;장명재;임권택
    • 청정기술
    • /
    • 제18권3호
    • /
    • pp.280-286
    • /
    • 2012
  • 초임계 이산화탄소를 이용하여 희생 $SiO_2$층에 대한 건식 식각 실험을 진행하였다. HF/pyridine (HF/py) 식각액과 알콜 첨가제를 사용하여 이중 챔버 시스템 방식으로 boron phosphor silica glass (BPSG), tetraethyl orthosilicate (TEOS), thermal $SiO_2$와 Si-nitride (SiN)의 박막 층에 대한 식각 성능을 조사하였다. 메탄올의 첨가에 의하여 실리카 희생막에 대한 HF/py의 식각률이 높아지는 것을 확인할 수 있었다. BPSG를 제외하고는 메탄올이 가장 높은 식각률을 보여줬지만, BPSG의 SiN에 대한 식각 선택비는 이소프로판올이 가장 높았다. HF/py/MeOH 계의 건식 식각반응에서 반응 온도에 따라서 박막별 식각률이 증가하였다. 특히 반응 온도 증가에 따라 BPSG의 식각 속도의 증가폭이 매우 높게 나타났다. HF/py에 알콜 공용매를 첨가하여도 식각 부산물 감소에는 크게 효과가 없었다. HF/$H_2O$의 식각률이 HF/py/alcohol 보다 높게 나타났지만 HF/$H_2O$에 알콜 공용매를 첨가하였을 때는 오히려 식각률이 감소되었다. 캔틸레버 빔 구조를 초임계 이산화탄소 건식 식각으로 제조하여 높은 종횡비의 패턴구조물을 손상 없이 성공적으로 식각할 수 있었다.

용매성 유기분자와 니트로벤젠 및 그의 유도체와의 전하전이 착물에 관한 연구 (Study on the Charge-Transfer Complexes Formed between the Derivatives of Nitrobenzene and Some Organic Solvent Molecules)

  • 신두순;김시중
    • 대한화학회지
    • /
    • 제17권2호
    • /
    • pp.85-94
    • /
    • 1973
  • 니트로 벤젠의 세가지 유도체, 즉 1.3.5-트리니트로벤젠(1.3.5-TNB), m-디니트로벤젠(m-DNB) 및 니트로벤젠(NB)등이 11종의 염기성 유기 용매 즉, ${\alpha}$-피콜린, 피리딘, 디메틸술포옥시드(DMSO), NN′-디메틸초산아미드(NN′-DMA), 테트라히드로퓨란(THF), 1,4-디옥산, 디에틸에테르, 시안화메틸, 프로필렌옥시드, 에피클로로히드린, 초산메틸등과 사염화탄소용액중에서 전하전이착물을 형성함을 자외선분광광도법에 의해 확인하고, 이들 전하전이착물의 안정도 상수를 결정하였다. Drago 와 Wayland 의 이중척도엔탈피식(double-scale-enthalpy)을 수정하여 $logK = E_AC_A+E_DC_D$식을 얻고, 이것을 써서 정전기적효과 $E_D$와 공유성효과 $C_D$값을 11종의 유기 용매에 대해 얻었다. 이 두 효과는 전하전이착물의 안정도 상수 K와 그리고 적외선 흡수 스펙트럼의 신축진동수변화 ${\Delta}{\nu}_C=O$에 영향을 주며, 특히 $C_D$ sms 안정도 상수에 비례하였고, 신축진동수변화 ${\Delta}{\nu}_{C=O}= 37.4-5.47E_D+12.1C_D$의 실험식을 얻었다. ${\pi}$결합을 가진 분자들이 전이착물을 이룰 때 정전기적효과와 공유성효과와 공유성효과가 모두 관여하며, 그밖에 결합하는 분자의 ${\pi}$궤도함수도 중요한 역할을 한다는 것을 알았다.

  • PDF