• Title/Summary/Keyword: Push-out Test

Search Result 207, Processing Time 0.022 seconds

Fatigue Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 피로거동)

  • Shim, Chang Su;Lee, Pil Goo;Kim, Hyun Ho;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.621-628
    • /
    • 2003
  • Stud shear connectors are the most commonly used shear connectors: up to 22mm studs are usually used in steel-concrete composite structures. To expand the current design codes for stud connectors, large studs with a diameter of more than 25mm should be investigated. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, fatigue behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range was evaluated through shear tests on 25mm, 27mm, and 30mm studs and compared with those from static tests. The fatigue behavior of large studs was discussed in terms of residual slip and load-slip curves. The initiation of fatigue cracks in the welding part could be detected through the history of displacement range. Test results showed that the design fatigue endurance of S-N curves in current design codes could be applied to large stud shear connector.

Static Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 정적거동)

  • Lee, Pil Goo;Shim, Chang Su;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.611-620
    • /
    • 2003
  • Shear studs with a diameter of 19mm or 22mm are typically used in steel-concrete composite bridge. For the simplification of details in steel bridges, the convenience of removing concrete slab, and the efficient distribution of shear pockets for precast decks, large studs can be an excellent alternative. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, static behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range and trilinear load-slip curves were proposed after shear tests on 25mm, 27mm, and 30mm studs. The ultimate slip capacity and ultimate strength of large studs were also evaluated, with the test results revealing conservative values for the design shear strength in Eurocode-4. For 30mm stud shear connectors, the welding quality and bearing capacity of concrete slab should be improved.

Finite Element Analysis of Deformation Characteristics of the Shear Studs embedded in High Strength Concrete Slab of the Composite Beam (전단스터드의 변형특성에 관한 유한요소해석 -고강도 콘크리트를 사용한 합성보-)

  • Shin, Hyun Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.473-482
    • /
    • 2007
  • When the material strength and ductility of shear studs is sufficient to carry the interface shear force, the composite beam can behave safely without premature structural failure in the interface and without ultimate moment reduction. In this study, the influence of the deformation capacity of shear studs embedded in high-strength concrete on structural behavior and design condition of composite beam is analyzed using FEM. In the analysis, load type, degree of shear connection and arrangement of studs are considered as analysis parameters. According to analysis results, in the case of partial interaction,the deformation capacity of studs embedded in high-strength concrete should be considered together with material strength. Especially in the case of uniform arrangement of studs and uniformly distributed load, a minimum available degree of shear connection is restricted by the deformation capacity of studs. In this case,shear studs should be arranged in consideration of the distribution of shear force at the composite section.

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.

Effect of surface treatment of FRC-Post on bonding strength to resin cements (FRC-포스트의 표면처리가 레진시멘트와의 접착력에 미치는 영향)

  • Park, Chan-Hyun;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods: Pre-surface treated LuxaPost (DMG), Rely-X Fiber Post (3M ESPE) and self adhesive resin cement Rely-X Unicem (3M ESPE), conventional resin cement Rely-X ARC (3M ESPE), and Rely-X Ceramic Primer (3M ESPE) were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and oneway ANOVA with multiple comparisons using Scheffe's test. Results: Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions: Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

A STUDY FOR THE BONDING STRENGTH OF COMPOSITE RESIN CORE TO GLASS FIBER POST (Glass Fiber Post와 Composite Resin Core의 전단결합강도)

  • Kim Tae-Hyoung;Shim June-Sung;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.415-425
    • /
    • 2005
  • Statement of problem : Fracture of composite resin core will be occulted by progress of crack. Bonding interface of different materials has large possibility of starting point of crack line. Therefore, the bond strength of glass fiber post to composite resin core is important for prevention of fracture. Purpose: This in vitro study tried to find out how to get the higher strength of glass fiber post to composite resin core through surveying the maximum load that fractures the post and cote complex. Materials and methods: 40 specimens made with glass fiber Posts(Style $post^{(R)}$, Metalor, Swiss) and composite resin core ($Z-100^{(R)}$, 3M, USA) were prepared and loaded to failure with push-out type shear-bond strength test in a universal test machine. The maximum fracture load and fracture mode were investigated in the specimens that were restored with four different surface treatments. With the data. ANOVA test was used to validate the significance between the test groups, and Bonferroni method was used to check if there is any significant statistical difference between each test group. Evely analysis was approved with 95% reliance. Results: On measuring the maximum fracture load of specimens, both the treatments of sandblasted and acid-etched one statistically showed the strength increase rather than the control group (p<0.005). The scanning electric microscope revealed that sand blasting made more micro-retention form not only on the resin matrix but on the glass fiber, and acid-etching contributed to increase in surface retention form, eliminated the inorganic particles in resin matrix. Specimen fracture modes investigation represented that sand blasted groups showed lower bonding failure than no-sand blasted groups. Conclusion: Referring to the values of maximum fracture load of specimens, the bonding strength was increased by sand blasting and acid-etching.

A Study on Strength of Shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs (경량콘크리트 슬래브와 철골보의 합성보에서 쉬어 코넥터의 강도에 관한 연구)

  • 주기수;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.356-361
    • /
    • 1994
  • From the previous experimental test results, it has shown that shear that shear strength in lightweight concrete beams was about 85% on that in normal concrete beams. It is speculated that shear connectors in composite beams of steel and lightweight concrete associated with the longitudinal shear strength decrease more in strength than those in normal concrete. So this paper, as a study on strength of shear connectors in composite beams of steel and lightweight concrete slabs, has a purpose to compare the strength formula resulted from the push-out test of thirteen solid slab and four deck Plate slab with the established ones, and then to suggest a proper strength formula of the shear connectors. The established strength formula of the shear connectors is prescribed for $P_ps = 0.50A_s . \sqrt{f_C . E_C}$by AISC coed, but from the experimental test results the strength values of the shear connectors in lightweignt concrete slabs shows about 70% on those of the shear connectors in normal concrete slabs by AISC code. Therefore, as a strength formula this paper suggests to multiply the established strength formula by reduction factor$(\varphi=0.7)$.

  • PDF

Shear and tensile behaviors of headed stud connectors in double skin composite shear wall

  • Yan, Jia-Bao;Wang, Zhe;Wang, Tao;Wang, Xiao-Ting
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.759-769
    • /
    • 2018
  • This paper studies shear and tensile behaviors of headed stud connectors in double skin composite (DSC) structure. Firstly, 11 push-out tests and 11 tensile tests were performed to investigate the ultimate shear and tensile behaviors of headed stud in DSC shear wall, respectively. The main parameters investigated in this test program were height and layout of headed stud connectors. The test results reported the representative failure modes of headed studs in DSC structures subjected to shear and tension. The shear-slip and tension-elongation behaviors of headed studs in DSC structures were also reported. Influences of different parameters on these shear-slip and tension-elongation behaviors of headed studs were discussed and analyzed. Analytical models were also developed to predict the ultimate shear and tensile resistances of headed stud connectors in DSC shear walls. The developed analytical model incorporated the influence of the dense layout of headed studs in DSC shear walls. The validations of analytical predictions against 22 test results confirmed the accuracy of developed analytical models.

Static and fatigue performance of stud shear connector in steel fiber reinforced concrete

  • Xu, Chen;Su, Qingtian;Masuya, Hiroshi
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.467-479
    • /
    • 2017
  • The stud is one of the most frequently used shear connectors which are important to the steel-concrete composite action. The static and fatigue behavior of stud in the steel fiber reinforced concrete (SFRC) were particularly concerned in this study through the push-out tests and analysis. It was for the purpose of investigating and explaining a tendency proposed by the current existing researches that the SFRC may ameliorate the shear connector's mechanical performance, and thus contributing to the corresponding design practice. There were 20 test specimens in the tests and 8 models in the analysis. According to the test and analysis results, the SFRC had an obvious effect of restraining the concrete damage and improving the stud static performance when the compressive strength of the host concrete was relatively low. As to the fatigue aspect, the steel fibers in concrete also tended to improve the stud fatigue life, and the favorable tensile performance of SFRC may be the main reason. But such effect was found to vary with the fatigue load range. Moreover, the static and fatigue test results were compared with several design codes. Particularly, the fatigue life estimation of Eurocode 4 appeared to be less conservative than that of AASHTO, and to have higher safety redundancy than that of JSCE hybrid structure guideline.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.