• Title/Summary/Keyword: Push-out

Search Result 398, Processing Time 0.033 seconds

A Study on Smart Trash Can and User UX Designs: A Software Engineering Approach for Health Care

  • Yoon, Jun-Ho;Bae, Geun-Pyo;Huh, Jun-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.725-727
    • /
    • 2017
  • In this study, a function that informs the trash can users about daily collectable trash types and the visiting schedule of collection trucks with an application-based push alarms is proposed along with other function that lets the user to receive the information regarding the volume of trash cans located near his/her residence and monthly average trash volume once the user registers his/her personal information online. This functions are used for the UX design between smart trash can and users. The proposed system allows trash collection trucks to find the most efficient path from their current positions by finding out users' trash can volumes in advance. The UX design and the smart trash can system proposed in this study aim to improve the trash processing efficiency by allowing users to check the volume of their trash.

A Study on the Strength Evaluation of Micropile with Expanded Drill Hole (확공형 마이크로 파일의 강도 평가에 관한 연구)

  • Lee, Jae-Min;Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.74-81
    • /
    • 2014
  • This study proposes an advanced type of a micropile system. The proposed micropile system consists of perfobond ribs installed steel rod to improve shear capacity between the thread and the grout, and partially expanded drill holes to increase resistance capacity between the grout and the ground. This study contains experimental evaluations on the proposed micropile system to verify the shear capacity of perfobond rib installed on the steel rod and the load-carrying capacity of shear key created by the partially expanded drill hole. Push-out tests were conducted on a rolled screw thread and steel rods which perfobond ribs are installed instead of rolled screw, in order to compare their load-carrying capacity and behavioral characteristics. As a result, it was confirmed that the perfobond-rib steel rods show much superior structural behavior in terms of initial stiffness, ultimate load, and ductile behavior.

Mechanisms of sulfate ionic diffusion in porous cement based composites

  • Gospodinov, P.;Mironova, M.;Kazandjiev, R.
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.273-284
    • /
    • 2007
  • The paper considers a theoretical model for the study of the process of transfer of sulfate ions in saturated porous media - mineral composites. In its turn, the model treats diffusion of sulfate ions into cement based composites, accounting for simultaneous effects such as filling of micro-capillaries with ions and chemical products and liquid push out of them. The proposed numerical algorithm enables one to account for those simultaneous effects, as well as to model the diffusive behavior of separate sections of the considered volume, such as inert fillers. The cases studied illustrate the capabilities of the proposed model and those of the algorithm developed to study diffusion, considering the specimen complex configuration. Computations show that the theoretical assumptions enable one to qualitatively estimate the experimental evidence and the capabilities of the studied composite. The results found can be used to both assess the sulfate corrosion in saturated systems and predict and estimate damage of structures built of cement-based mineral composites.

Pushover Analysis Considering Effects of Degradation of Shear Strength (전단강도 감소효과를 고려한 Pushover 해석)

  • Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.514-517
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). From the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring for shear degradation.

  • PDF

Modeling of sulfate ionic diffusion in porous cement based composites: effect of capillary size change

  • Gospodinov, Peter N.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.157-166
    • /
    • 2007
  • The paper considers a theoretical model to study sulfate ion diffusion in saturated porous media - cement based mineral composites, accounting for simultaneous effects, such as filling micro-capillaries (pores) with ions and chemical products and liquid push out of them. Pore volume change and its effect on the distribution of ion concentration within the specimen are investigated. Relations for the distribution of the capillary relative radius and volume within the composite under consideration are found. The numerical algorithm used is further completed to consider capillary size change and the effects accompanying sulfate ion diffusion. Ion distribution within the cross section and volume of specimens fabricated from mineral composites is numerically studied, accounting for the change of material capillary size and volume. Characteristic cases of 2D and 3D diffusion are analyzed. The results found can be used to both assess the sulfate corrosion in saturated systems and predict changes occurring in the pore structure of the composite as a result of sulfate ion diffusion.

Simulation of Extremely Low Cycle Fatigue Fracture in Ductile Cast Iron (구상흑연주철 극저사이클 피로파괴의 시뮬레이션 구현)

  • Kim, Min-Gun;Lim, Bok-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1573-1580
    • /
    • 2006
  • In this study, fatigue tests were carried out under push-pull loading condition using spheroidal graphite cast iron in order to clarify the internal fatigue fracture mechanism in an extremely low cycle fatigue regime. It is found that a successive observation of internal fatigue damage it is found that the fracture processes go through three stages, that is, the generation, growth and coalescence of microvoids originated from debonding of graphite-matrix interface. It is also found that the crack which is initiated from the void propagates by coalescence of neighboring cracks and the fatigue crack growth rate can be expressed in form of the Manson-Coffin rule type. In this paper, quantitative analyses of fatigue properties for realization of simulation about fatigue life evaluation are also presented.

Analysis of Air Flow Rate through Subway Vent Shaft with Mechanical Ventilation System for Shape Change of Vent Shaft

  • Kim, Jung-Yup
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • Three-dimensional numerical analyses of mechanical ventilation system in vent shaft of subway in operation are carried out in relation with the different air flow passage of vent shaft and two ventilation operation modes of push/pull, The ventilation characteristics of vent shaft with regard to the shape change are evaluated. And the air flow rate through the vent shaft by ventilation system is measured within subway in operation to assess the accuracy and applicability of the numerical analysis method. The decrease of air flow rate due to vent-shaft change are between 0.7 to 2.2% in the cases examined.

Experiments on behavior of concrete and steel composite based on perfobond size (Perfobond 크기에 따른 콘크리트와 철재 합성재의 거동 실험)

  • Kim, Dong-Yeon;Rhim, Hong-Chul;Park, Sung-Woon;Kim, Do-Kyun;Lyu, Seung-Il;Park, Dae-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • Connection between concrete and steel in composite members are usually achieved through shear connectors. In this study, the shear strength of concrete througth the holes of perfobond is experimentally obtained. Based on the size of perfobond, different strengths have been obtained and analyzed.

  • PDF

Shear transfer mechanisms in composite columns: an experimental study

  • De Nardin, Silvana;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.377-390
    • /
    • 2007
  • In the design of concrete filled composite columns, it is assumed that the load transfer between the steel tube and concrete core has to be achieved by the natural bond. However, it is important to investigate the mechanisms of shear transfer due to the possibility of steel-concrete interface separation. This paper deals with the contribution of headed stud bolt shear connectors and angles to improve the shear resistance of the steel-concrete interface using push-out tests. In order to determine the influence of the shear connectors, altogether three specimens of concrete filled composite column were tested: one without mechanical shear connectors, one with four stud bolt shear connectors and one with four angles. The experimental results showed the mechanisms of shear transfer and also the contribution of the angles and stud bolts to the shear resistance and the force transfer capacity.

Nonlinear Finite Element Analysis of Considering Interface Behaviors between Steel and Concrete (강-콘크리트 계면파괴에 관한 비선형 유한요소해석)

  • Joo, Young-Tae;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.105-108
    • /
    • 2004
  • In general, the nonlinear behavior of composite structures composing of steel and concrete is analyzed on the basis of the assumption of the perfect bond actions in steel-concrete interface in which the interface slip or separation is not allowed. The assumption is based on the fact that the full interface bond behavior is provided with the mechanical connectors of studs. However, since the number and spacing of the studs are determined by the stress resultants calculated in the interface area, the interface analysis is required to evaluate the stress resultants. This paper describes the nonlinear steel-concrete interface behavior considering the two interface failure mechanisms of slip and separation. Elastoplastic constitutive relation is developed. thru the formulation framework using the two energy dissipation mechanisms. As the result, the steel plate push-out tests sandwitched between concrete blocks are analyzed and compared with the test results with which the good agreements are observed.

  • PDF