• Title/Summary/Keyword: Push-Out Mechanism

Search Result 28, Processing Time 0.02 seconds

A Study on Optimal Design of Piece Removing Automation System Using TRIZ and Brainstorming (트리즈와 브레인스토밍을 이용한 취부용 피스제거 자동화 시스템의 최적설계에 관한 연구)

  • Lee, Seong-Jo;Chung, Won-Ji;Kim, Ho-Jong;Kim, Ki-Jung;Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.43-48
    • /
    • 2008
  • This study includes contents on an effective designing of the outer-wall piece removing equipment of a hull, by applying TRIZ. To remove the piece, gas torch was used. However, the heat source must be shut down since the heat source of gas torch has a bad influence on this system. This is why TRIZ and Brainstorming were used, to solve this problem. First, we analyzed the system using TRIZ, and then presented the direction a solution is expected to follow. And the most suitable scheme was derived from brainstorming which had been conducted based on the direction of a solution. Lastly we conducted an equipment modeling based on the most suitable scheme we made before, and carried out the heat analysis to inspect its effect by comparing pre-existing mechanism with most suited scheme.

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Experimental study on the hybrid shear connection using headed studs and steel plates

  • Baek, Jang-Woon;Yang, Hyeon-Keun;Park, Hong-Gun;Eom, Tae-Sung;Hwang, Hyeon-Jong
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • Although several types of rigid shear connectors have been developed particularly to increase load-carrying capacity, application is limited due to the complicated details of such connection. In this study, push-out tests were performed for specimens with hybrid shear connectors using headed studs and shear plates to identify the effects of each parameter on the structural performance of such shear connection. The test parameters included steel ratios of headed stud to shear plate, connection length, and embedded depth of shear plates. The peak strength and residual strength were estimated using various shear transfer mechanisms such as stud shear, concrete bearing, and shear friction. The hybrid shear connectors using shear plates and headed studs showed large load-carrying capacity and deformation capacity. The peak strength was predicted by the concrete bearing strength of the shear plates. The residual strength was sufficiently predicted by the stud shear strength of headed studs or by shear friction strength of dowel reinforcing bars. Further, the finite element analysis was performed to verify the shear transfer mechanism of the connection with hybrid shear connector.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

An Experimental Study on Joint Structures of Composite Truss Bridges (복합 트러스 교량의 연결구조에 대한 실험적 연구)

  • Shim, Chang Su;Park, Jae Sik;Kim, Kwang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.303-312
    • /
    • 2007
  • Steel box girder bridges are being commonly designed for medium-span bridges of span length. Composite truss bridges with steel diagonals instead of concrete webs can be an excellent design alternative, because it can reduce the dead weight of superstructures. One of the key issues in the design of composite truss bridges is the joint structureconnecting the diagonal steel members with the upper and lower concrete slabs. Because the connection has to carry concentrated combined loads and the design provisions for the joint are not clear, it is necessary to investigate the load transfer mechanism and the design methods for each limit state. There are various connection details according to the types of diagonal members. In this paper, the joint structure with group stud connectors welded on a gusset plate is used. Push-out tests for the group stud connectors of were performed. The test results showed that the current design codes on the ultimate strength ofthe stud connection can be used when the required minimum spacing of stud connectors is satisfied. Flexure-shear tests were conducted to verify the applicability of the design provisions for combined load effects to the strength of joint structures. To increase the pullout strength of the connection, bent studs were proposed and utilized for the edge studs in the group arrangement of the joint. The results showed that the details of the joint structure were enhanced. Thereafter, design guidelines were proposed.

Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: an experimental study

  • Le, Van Phuoc Nhan;Bui, Duc Vinh;Chu, Thi Hai Vinh;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1001-1019
    • /
    • 2016
  • The connector is the most important part of a composite beam and promotes a composite action between a steel beam and concrete slab. This paper presents the experiment results for three large-scale beams with a newly puzzle shape of crestbond. The behavior of this connector in a composite beam was investigated, and the results were correlated with those obtained from push-out-test specimens. Four-point-bending load testing was carried out on steel-concrete composite beam models to consider the effects of the concrete strength, number of transverse rebars in the crestbond, and width of the concrete slab. Then, the deflection, ultimate load, and strains of the concrete, steel beam, and crestbond; the relative slip between the steel beam and the concrete slab at the end of the beams; and the failure mechanism were observed. The results showed that the general behavior of a steel-concrete composite beam using the newly puzzle shape of crestbond shear connectors was similar to that of a steel-concrete composite beam using conventional shear connectors. These newly puzzle shape of crestbond shear connectors can be used as shear connectors, and should be considered for application in composite bridges, which have a large number of steel beams.

The Effects of Regular Exercise on the FMS Score in 20s Females (운동유무가 20대 성인여성의 FMS점수에 미치는 영향)

  • Kim, Sangyoon;Oh, Hanbyeol;Lee, Seonhee;Ji, Eunsun;Choi, Sangwon;Jang, Junhyeok
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • Purpose : The purpose of this study is to evaluate the stability and balance of the body, mobility complex exercise group and a student group for FMS tests to compare the differences between the two groups to identify its purpose. Method : The subjects of this study FMS measuring D University Physical Therapy, a student enrolled patients (7:7), and 7 patients total of 14 patients was conducted, compound exercise group weekly stretching 10 minutes, the 24 members who have run a complex exercise, 10 minutes of cool down stretching, 20-minute aerobic exercise were included in the study. Result : The results of this study, according to 1) Deep squat, Inline lunge, Trunk Stability Push-up there was significant difference(p<0.05), compound exercise group came out significantly higher. 2) Hurdle Step, Shoulder Mobility Reaching, Active Straight-leg Raise, Rotary stability in measured target these women flexibility because the test items that did not show a significant difference(p>0.05), the two groups averaged compared to the other items were higher. Complex exercise group, a statistically significant difference was overall average. Conclusion : FMS can not be resolved because of a compensatory mechanism to identify disparities and unbalanced movement patterns can help. Therefore, if the FMS and other tests conducted by splicing, will be utilized more profitably, and you will be able to suggest ways that can have a positive impact injury prevention is added to the side to expand the scope of the physical therapist.

A Design Perspective on Instagram Addiction (디자인적 관점에서 바라본 인스타그램 중독)

  • Changhee Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.339-345
    • /
    • 2023
  • Design exists behind technology. Design is intertwined with the needs of daily life and market structures, and while dealing with technology, it can become insensitive to its meaning. Unlike other social media platforms, Instagram consists of image-based content. The purpose of this study is to examine the addictive design of Instagram. Furthermore, we discuss the ethical responsibilities that designers must have. A theoretical framework for understanding Instagram design is established through a review of major domestic and international literature that has been previously studied. Understand the history, structure, and functions of Instagram and identify Instagram designs that promote social media addiction. In this study, we introduced the mechanism by which Instagram promotes user addiction through design issues. (1) Pull-to-Refresh (2) Red color in push alarm (3) Profile photo border expression in Instagram Story. This design stimulates users' social desires and FOMO, forming the structure of obsessive Instagram usage habits. Instagram is an example that forces us to reconsider the ethical role of design and designers along with the advancement of technology. In today's world, the intrinsic value of what they create, including our society and life itself.