• Title/Summary/Keyword: Purse seine catch

Search Result 44, Processing Time 0.019 seconds

A Bayesian State-space Production Assessment Model for Common Squid Todarodes pacificus Stock Caught by Multiple Fisheries in Korean Waters (한국 해역의 살오징어(Todarodes pacificus) 개체군 자원평가를 위한 베이지안 상태공간 잉여생산량 모델의 적용)

  • An, Dongyoung;Kim, Kyuhan;Kang, Heejung;Hyun, Saang-Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.769-781
    • /
    • 2021
  • Given data about the annual fishery yield of the common squid Todarodes pacificus, and the catch-per-unit-effort (CPUE) data from multiple fisheries from 2000-2018, we applied a Bayesian state - space assessment model for the squid population. One of our objectives was to do a stock assessment, simultaneously incorporating CPUE data from the following three fisheries, (i) large trawl, (ii) jigger, and (iii) large purse seine, which comprised on average a year about 65% of all fisheries, allowing possible correlations to be reflected. Other objectives were to consider both observation and process errors and to apply objective priors of parameters. The estimated annual exploitable biomass was in the range of 3.50×105 to 1.22×106 MT, the estimated intrinsic growth rate was 1.02, and the estimated carrying capacity was 1,151,259 MT. Comparison with available results from stock assessment of independently analyzed single fisheries revealed a large difference from the estimated values, suggesting that stock assessment based on multiple fisheries should be performed.

Inference of Age Compositions in a Sample of Fish from Fish Length Data (개체군 체장자료를 이용한 연령조성 추정)

  • Kim, Kyuhan;Hyun, Saang-Yoon;Seo, Young Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.79-90
    • /
    • 2018
  • Fish ages are critical information in fish stock assessments because they are required for age-structure models such as virtual population analysis and stochastic catch-at-age models, whose outputs include recruitment strengths, a spawning stock size (abundance or biomass), and the projection of a fish population size in future. However, most countries other than the developed countries have not identified ages of fish caught by fisheries or surveys in a consistent manner for a long time (e.g.,>20 years). Instead, data about fish body sizes (e.g., lengths) have been well available because of ease of measurement. To infer age compositions of fish in a target group using fish length data, we intended to improve the length frequency analysis (LFA), which Schnute and Fournier had introduced in 1980. Our study was different in two ways from the Schnute and Fournier's method. First we calculated not only point estimates of age compositions but also the uncertainty in those estimates. Second, we modified LFA based on the von Bertalanffy growth model (vB-based model) to allow both individual-to-individual and cohort-to-cohort variability in estimates of parameters in the vB-based model. For illustration, we used data about lengths of Korean mackerel Scomber japonicas caught by purse-seine fisheries from 2000-2016.

A Study of Growth and Age Structure for Chub Mackerel, Scomber japonicus Caught by a Large Purse Seine in the Korean Waters (한국 주변해역에서 대형선망으로 어획한 고등어(Scomber japonicus)의 성장과 연령구조 연구)

  • Jung, Kyung-Mi;Kim, Heeyong;Kang, Sukyung
    • Korean Journal of Ichthyology
    • /
    • v.33 no.2
    • /
    • pp.64-73
    • /
    • 2021
  • We examined the growth and age structure for chub mackerel caught by a large purseseine in the Korean waters from January to December 2015. A total of 459 specimens were used for otolith analysis, ranging from 19.6 cm to 46.0 cm in fork length. Translucent zone was regarded as an annual mark, and age was counted using the information of the number of translucent zone, capture date, edge type of the otolith and nominal birthdate of 1 January. Annuli in otoliths were mainly formed in May, coinciding with the spawning season. Estimated ages were 0~6 years, and the von Bertalanffy growth models were not significantly different between male and female. Sex-combined growth model was obtained as FLt=39.3×{1-exp[-0.90×(t+0.033)]}. Among the chub mackerel caught in 2015, the age 2 group had the highest proportion (30.9%), and the age 0 to 2 group accounted for 88.5% of the total catch.

Hydroacoustic survey on distribution and density of fisheries resources in the Marado coastal area of Jeju, Korea (제주도 마라도 연안해역의 어업생물자원에 대한 분포밀도의 음향학적 조사)

  • SEO, Young-Il;OH, Taeg-Yun;CHA, Hyung-Kee;LEE, Kyounghoon;YOON, Eun-A;HWANG, Bo-Kyu;LEE, Yoo-Won;KIM, Byung-Yeob
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.209-219
    • /
    • 2016
  • The survey was conducted to investigate biomass and distribution of fisheries resources using a quantitative echo sounder and a fixed gillnet around Marado coast of Jeju to obtain the scientific basic data for dispute resolution with a large purse seine fishery and coastal fishing and policy establishment of reasonable fisheries resources. Hydroacoustic surveys were conducted six times (November 28~29, 2015 (night), February 23~24, 2016 (night) and March 3~4, 2016 (night/day), March 30~31, 2016 (night/day)) using a quantitative echo sounder. The pelagic fish densities were relatively higher around Marado in November 2015, February 2016 and March 3~4, 2016. However, demersal fish densities were relatively higher in Jeju coastal waters on March 30~31, 2016. Catch data using fixed gill net were used to calculate biomass. Based on the hydroacoustic data, fish length-weight function and target strength information of dominant fish, the biomass of fishes were estimated as follow: 5.64 ton CV = 70.2% at night on November 28-29 2015, 7.14 ton CV = 35.8% of pelagic fish and 530.77 ton CV = 34.6% of demersal fishes at night on February 23-24 2016, 2.34 ton CV = 56.7% of pelagic fish and 571.93 ton CV = 40.3% of demersal fish at daytime, 1.39 ton CV = 48.4% of pelagic fish and 194.59 ton CV = 54.3% of demersal fish at night on March 3~4 2016, 0.37 ton CV = 72.9% of pelagic fish and 338.79 ton CV = 99.7% of demersal fish at daytime, 0.24 ton CV = 21.3% of pelagic fish and 68.61 ton CV = 53.8% of demersal fish at night on March 30~31 2016.