• Title/Summary/Keyword: Purified salt

Search Result 172, Processing Time 0.032 seconds

Isolation and Identification of Antioxidative Compounds in Fermented Glasswort (Salicornia herbacea L.) Juice (함초발효액으로부터 항산화 활성 물질의 분리 및 동정)

  • Cho, Jeong-Yong;Park, Sun-Young;Shin, Mi-Jeong;Gao, Tian-Cheng;Moon, Jae-Hak;Ham, Kyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1137-1142
    • /
    • 2010
  • The chloroform layer of fermented glasswort (Salicornia herbacea) juice was found to have higher radical-scavenging activity than the other layers by the assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) ($ABTS^+$) radicals. Two antioxidative compounds were isolated and purified from the chloroform layer by Sephadex LH-20 column chromatography using the guided assay of DPPH radical scavenging. Based on mass spectrometer and nuclear magnetic resonance, the isolated compounds were identified as cirsiumaldehyde (1) and chrysoeriol (2). This is the first study to report the presence of those compounds in fermented glasswort juice. Compound 2 showed higher radical-scavenging activity than 1.

Physicochemical Properties and Bacterial Communities of Meongge (Halocynthia roretzi) Jeotgal Prepared with 3 Different Types of Salts

  • Kim, Jeong A;Yao, Zhuang;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.527-537
    • /
    • 2019
  • Three types of meongge (Halocynthia roretzi) jeotgal (MJ) were prepared with 3 different types of salts (12%, w/v): purified salt (PS), solar salt aged for 3 years (SS), and bamboo salt that had been recrystalized 3 times (BS). One set of MJ was fermented with starters, Bacillus subtilis JS2 and Tetragenococcus halophilus BS1-37 (each 6 log CFU/g), and another set without starters for 42 days at $10^{\circ}C$. The LAB count of the SSMJ (non-starter) was highest at day 28 (2.30 log CFU/g). The pH of the PSMJ and SSMJ was 5.72-5.77 at day 0, and 5.40-5.50 at day 42. BSMJ showed higher pH and lower titratable acidities than other samples. Amino-type nitrogen (ANN) increased continuously, and SSMJ showed higher values than other samples from day 14. Bacterial species of non-starter MJ were examined by culture independent method. Clone libraries of 16S rRNA genes were constructed in Escherichia coli from total DNA from non-starter MJ samples at day 0, 14, and 28. Thirty clones per each sample were randomly selected and DNA sequences were analyzed. Variovorax sp., uncultured bacterium, and Acidovorax sp. were the most dominant group at day 0, 14, and 28, respectively. Lactobacillus sakei and Streptococcus sp. were the next dominant group in SSMJ at day 28. A Streptococcus sp. was detected from PSMJ at day 28. Sensory evaluation for MJ samples at day 28 showed that SSMJ got higher overall acceptability scores. These results showed that solar salt can cause desirable changes in the microbial community of fermented foods, thereby positively affecting their overall quality.

Characterization of Kimchi Fermentation Prepared with Various Salts (국내산 천일염, 수입염, 세척탈수염, 기계염 및 가공염으로 제조한 김치의 발효특성)

  • Kim Seon-Jae;Kim Hag-Lyeol;Ham Kyung-Sik
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.395-401
    • /
    • 2005
  • This study was carried out to investigate the changes in the fermentation characteristics of Kimchi prepared with various salts (Korean solar salt, Chinese solar salt, washed and dehydrated salt, purified salt and a processed salt). Acidity appeared to increase most rapidly in Kimchi prepared with Korean solar salt and reached higher level. Total microbial count slowly increased at the beginning of fermentation and reached maximum on 6 days, then decreased slowly. The number of lactic acid bacteria was rapidly increased up to $4{\sim}6$ days, and thereafter decreased slowly. In conclusion, any significant differences in fermentation characteristics analyzed was not observed in Kimchi prepared with various salts except acidity.

Purification of xylose reductase from Candida sp. BT001 and characterization of its properties (Candida sp. BT001의 xylose reductase의 정제 및 성질)

  • Hwang, In-Gyun;Lee, Sang-Hyub;Lee, Wang-Sik;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.178-183
    • /
    • 1993
  • Xylose reductase (alditol: $NADP^+$ 1-oxidoreductase, EC 1.1.1.21) from the xylose-fermenting yeast, Candida sp. BT001, was purified via salt fractionation, ion-exchange, gel filtration and affinity chromatography, and its properties were characterized. The enzyme from the yeast was active with both NADPH and NADH as coenzyme. The xylose reductase activity with NADH was approximately 51% of that with NADPH and the specific activities of purified enzyme with NADPH and NADH were 11.78 U/mg and 6.01 U/mg, respectively. Molecular weight of the purified enzyme was 31,000 on SDS-PAGE and 61,000 on gel filtration. The Km for D-xylose, NADPH, and NADH was $94.2{\times}10^{-3}M,\;0.011{\times}10^{-3}M\;and \;0.032{\times}10^{-3}M$, respectively. The purified xylose reductase had relatively higher substrate affinity for L-arabinose than other aldoses tested. The optimal pH was 6.2 and the optimal reaction temperature was $45^{\circ}C$. The thermal stability of the enzyme was for 20 minutes at $30^{\circ}C$.

  • PDF

Purification and Characterization of a Laccase from the Edible Wild Mushroom Tricholoma mongolicum

  • Li, Miao;Zhang, Guoqing;Wang, Hexiang;Ng, Tzibun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1069-1076
    • /
    • 2010
  • A novel laccase from Tricholoma mongolicum was purified by using a procedure that entailed ion-exchange chromatographies on DEAE-cellulose, CM-cellulose, and Q-Sepharose, and FPLC-gel filtration on Superdex 75. The purified enzyme was obtained with a specific activity of 1,480 U/mg-protein and a final yield of 15%. It was found to be a monomeric protein with a molecular mass of 66 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was GIGPVADLYVGNRIL, similar to some but also different to other mushroom laccases. The optimum pH and temperature for the purified enzyme were pH 2 to pH 3 and $30^{\circ}C$, respectively. It displayed a low $K_m$ toward 2,7-azinobis (3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) and high $k_{cat}/K_m$ values. The purified laccase oxidized a wide range of lignin-related phenols, but exerted maximal activity on ABTS. It was significantly inhibited by $Hg^{2+}$ ions, and remarkably stimulated by $Cu^{2+}$ ions. It inhibited HIV-1 reverse transcriptase and proliferation of hepatoma HepG2 cells and breast cancer MCF7 cells with an $IC_{50}$ of 0.65 ${\mu}M$, 1.4 ${\mu}M$, and 4.2 ${\mu}M$, respectively, indicating that it is also an antipathogenic protein.

Purification and Characterization of Extracellular Lipase from Staphylococcus xylosus SC-22 (Staphylococcus xylosus SC-22가 생산하는 lipase의 정제 및 특성)

  • 성찬기;갈상완;이상원;최영주
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.457-463
    • /
    • 2001
  • A bacterial strain SC-22 which produced alkaline lipase was isolated from salf-fermented shrimps. Strains SC-22 was identified as Staphylococcus xylosus. An alkaline lipase excreted by Staphylococcus xylosus SC-22 was purified by ammonium sulfate predipitation and column chromatography on Sephadex G-100 and DEAE-Sephace. The specific activity of purified lipase was 756U/mg of protein with 17.2% yield. The approximate molecular weight of the purified enzyme was 47 kDa. The partially purified lipase preparation had and optimum temperature of 4$0^{\circ}C$, an optimum pH of 8.0, and a stable of 5~10. Lipase activities were enhanced by salt ions such as $Ca^{2+}$, $Mg^{2+}$,N $a^{2+}$ while inhibited remarkably by heavy metal ions, C $u^{2+}$ and P $b^{2+}$.EX> 2+/.

  • PDF

Effect of Mung Bean Lectin (MBL) on Cytokine Gene Expression from Human Peripheral Blood Mononuclear Cells (사람 말초혈액 단핵세포에서 녹두 렉틴의 사이토카인 생성효과)

  • Jeune, Kyung-Hee;An, Mong-Gi;Jung, Su-Min;Choi, Kyung-Min;Lee, Seung-Ho;Chung, See-Ryun
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.4
    • /
    • pp.355-362
    • /
    • 1999
  • New lectins have been isolated and purified from mung bean (Phaseolus radiatus) through physiological saline extraction, ammonium sulfate salt fractionation and column chromatographies. Ion exchanger were eluted by linear salt gradient and then further purified through gel filtration. Thus obtained lectin named as MBL. The gene expressions of 5 cytokines (IL-1, IL-2, IL-6, $TNF-{\aphpa}$ and $IFN-{\gamma}$) from human peripheral blood mononuclear cells (PBMC) stimulated with MBL were investigated by using reverse transcription polymerase chain reaction (RT-PCR). PBMC ($1{\times}106$ cells/ml) isolated from healthy volunteers were stimulated with lectins (4 mg/ml) for various time intervals (1 to 96 hrs). After each of the various stimulated times, total RNA was isolated and assessed for different cytokines mRNA by RT-PCR. The mRNA encoding IL-1, IL-2 were detected continuously from 1 to 20 hrs, and IL-6 was detected up to 24 hrs. But the mRNA encoding $IFN-{\gamma}$ and $TNF-{\alpha}$ were detected to 8 hours only and showed short time response compared with other cytokines. The significant expression of all cytokines mRNA were observed at 4 hrs. These results suggested that MBL, as inducer of cytokines could elicit detectable cytokine mRNA from PBMC.

  • PDF

Recovery of Sodium Sulfate from Farm Dyainage Salt and Using It in Directive Dyeing of Cotton

  • Jiyoon Jung;Kwon, Ghi-Young
    • The International Journal of Costume Culture
    • /
    • v.4 no.2
    • /
    • pp.86-93
    • /
    • 2001
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. in searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The result indicated that sodium sulfate could be produced the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. Re recovered sodium sulfate samples, with purifies ranging from 67% to 99.91, were compard with commercially available sodium sulfate in directive dyeing of cotton fabrics. Direct Yellow 27 and direct Blue 1 had similar exhaustions among Na₂So₄Ⅰ, Na₂So₄Ⅱ, Na₂So₄Ⅲ and V which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂So₄Ⅳ had high exhaustion despite low ratios of sodium sulfate and sodium chloride. In direct Red 80, exhaustion depends more on the ratios of sodium sulfate and sodium chloride than sodium chloride. Na₂SO₄Ⅳ and Na₂SO₄V with high ratios of sodium chloride had more exhaustion than Na₂So₄and Na₂So₄Ⅲ with low ratios of sodium chloride. Generally, directive dyeing using recovered salts from farm drainage has similar or more excellent exhaustion than directive dyeing using commercial sodium sulfate.

  • PDF

Reuse of Sodium Sulfate Recovered from Farm Drainage Salt of San Joaquin Valley in California, U.S.A. as Dyeing Builder of Levelling Dyes (미국 캘리포니아 San Joaquin Valley 농업관개수에서 회수한 Sodium Sulfate의 균염성 염료 조제로의 재활용)

  • 정지윤
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.3
    • /
    • pp.416-422
    • /
    • 2003
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in the dyeing of levelling dyes with nylon/wool fabrics. In nylon/wool fabrics, C.I. Acid Yellow 23 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na₂SO₄ III and Na₂SO₄ Ⅴ which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂SO₄ Ⅳ had low exhaustion which had low ratios of sodium sulfate and sodium chloride. In nylon/wool fabrics, C.I. Acid Blue 158 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na2₂SO₄ III, Na₂SO₄ IV and Na₂SO₄ Ⅴ despite of Na₂SO₄ Ⅳ had low ratios of sodium sulfate and sodium chloride Generally, the dyeing of levelling dyes using recovered salts from farm drainage has similar or low exhaustion than the dyeing of levelling dyes using commercial sodium sulfate.

  • PDF

Thermal Release of LiCl Waste Salt from Pyroprocessing (파이로프로세싱 발생 LiCl염폐기물의 열발생)

  • Kim, Jeong-Guk;Kim, Kwang-Rag;Kim, In-Tae;Ahn, Do-Hee;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • The decay heat of Cs and Sr contained in a LiCl waste salt, generated from an electrolytic reduction process in pyroprocessing of spent nuclear fuel, has been calculated. The calculation has been carried out under some assumptions that most of the LiCl waste is purified and recycled to main process, and the residual is fabricated to make a waste form. As a result, the decay heat from daughter nuclides such as Ba and Y seems to be maximum 4.6 times higher than that from their parent nuclides such as Cs and Sr. The thermal release from Cs and Sr in the LiCl waste is the maximum around the first one month, so an cooling system operation for some time at the beginning would be suggested to control a rapid increase in the temperature of the LiCl waste salt.

  • PDF