• Title/Summary/Keyword: Purge &Trap

Search Result 68, Processing Time 0.023 seconds

원자층 식각을 이용한 Sub-32 nm Metal Gate/High-k Dielectric CMOSFETs의 저손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;Kim, Chan-Gyu;Kim, Jong-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.463-463
    • /
    • 2012
  • ITRS (international technology roadmap for semiconductors)에 따르면 MOS(metal-oxide-semiconductor)의 CD (critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/$SiO_2$를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두된다고 보고하고 있다. 일반적으로 high-k dielectric를 식각시 anisotropic 한 식각 형상을 형성시키기 위해서 plasma를 이용한 RIE (reactive ion etching)를 사용하고 있지만 PIDs (plasma induced damages)의 하나인 PIED (plasma induced edge damage)의 발생이 문제가 되고 있다. PIED의 원인으로 plasma의 direct interaction을 발생시켜 gate oxide의 edge에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 high-k dielectric의 식각공정에 HDP (high density plasma)의 ICP (inductively coupled plasma) source를 이용한 원자층 식각 장비를 사용하여 PIED를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. One-monolayer 식각을 위한 1 cycle의 원자층 식각은 총 4 steps으로 구성 되어 있다. 첫 번째 step은 Langmuir isotherm에 의하여 표면에 highly reactant atoms이나 molecules을 chemically adsorption을 시킨다. 두 번째 step은 purge 시킨다. 세 번째 step은 ion source를 이용하여 발생시킨 Ar low energetic beam으로 표면에 chemically adsorbed compounds를 desorption 시킨다. 네 번째 step은 purge 시킨다. 결과적으로 self limited 한 식각이 이루어짐을 볼 수 있었다. 실제 공정을 MOS의 high-k dielectric에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU (North Carolina State University) CVC model로 구한 EOT (equivalent oxide thickness)는 변화가 없으면서 mos parameter인 Ion/Ioff ratio의 증가를 볼 수 있었다. 그 원인으로 XPS (X-ray photoelectron spectroscopy)로 gate oxide의 atomic percentage의 분석 결과 식각 중 발생하는 gate oxide의 edge에 trap의 감소로 기인함을 확인할 수 있었다.

  • PDF

Analysis of 1,4-Dioxane and Chlorohydrins in Food Additives by Purge & Trap GC (퍼지앤트랩-기체크로마토그래피(PT-GC)를 이용한 식품첨가물 중 1,4-디옥산 및 클로로히드린류 분석)

  • 조태용;신영민;반경녀;오세동;이창희;이영자;문병우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.965-970
    • /
    • 2003
  • This study has been performed to develope a method for the simultaneous determination of 1,4-dioxane (DOX), epichlorohydrin (EPC), propylene chlorohydrin (PCH), ethylene chlorohydrin (ECH) and 1,3-dichloro-2-pro-panol (DCP) in polysorbates, chloline chloride, choline bitartrate, modified starch and spices by purge and trapgas chromatography. Experimental design was used to select a suitable trap by measuring the limit of detection (LOD) and to investigate the effect of temperature and salt of extraction, and the percentage of recovery in various matrix. The LOD of DOX, EPC, PCH, ECH and DCP were 1.38$\mu\textrm{g}$, 0.23$\mu\textrm{g}$, 3.30$\mu\textrm{g}$, 3.97$\mu\textrm{g}$, 20.43$\mu\textrm{g}$ respectively, by means of using Vorcarb 3000 trap with 5$0^{\circ}C$ sample sparger. Excluding EPC, the recoveries of target compounds were above 90% in all matrix. Target compounds in polysorbates (17), choline chloride (5), choline bitartrate (5), modified starch (8) and spices (25) were not detected. But 2.5 ppm of DOX was detected in Tween 80.

고농도 Out Gas 정량 분석법 개발

  • Kim, Min-Ju;Kim, Jong-Yun;Jeong, Gi-Ho;Park, Chang-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.13-13
    • /
    • 2009
  • 본 연구는 MLCC 구성성분의 증발/비등에 의한 저분자물질의 제거가 bar 수축에 미치는 영향도를 평가하기 위해, 압착 bar에서 발생하는 고농도의 out gas를 정량하기 위한 최적 system을 구축하고자 하였다. gas 포집에 범용적으로 사용하는 Purge & Trap sampler 대신 Heating block를 사용하여 gas를 발생시키고 동시에 solvent에 용해시킴으로써 고농도의 시료가 희석될 수 있는 전처리 장치를 디자인하였다. 그 결과 고농도 gas 주입에 의한 장비오염과 peak saturation 문제가 해결되었고, gas phase의 시료를 liquid phase로 상전이 시켜 autosampler를 이용한 정확한 량의 시료 주입이 가능하였다. System의 Gage Linearity와 Bias는 각각 1.7%와 1.3%로 개선이 필요없는 수준의 정확도를 가졌다.

  • PDF

Microbiological Characteristics and Volatile Components of Deastringent Persimmon Vinegar

  • Hur, Sung-Ho;Lee, Ho-Jae;Lee, Tae-Shik;Lee, Won-Koo;Hong, Jeong-Hwa
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.230-233
    • /
    • 1998
  • Acetic acid producing bacteria were isolated from deastringent persimmon vinegar and the major bacterium was identified using morphological and biochemical tests. Acetobacter sp. AH-1 was motile, gram negative rod with catalase positive and oxidase negative. The strain can grow up to 5 % ethanol and 2% NaCl as well as 25% glucose. Optimum temperature and pH for growth were 3$0^{\circ}C$ and 5.0, respectively. Volatile constituents of persimmon vinegar were analyzed by purge and trap sampling . Acetic acid adn alcohol were the largest volatile compounds quantitiatively in persimmon vinegar. Among alcohols, 20methyl-1-propanol, isoamyl alcohol and amyl alcohol were detected. Isovaleradehyde and benzaldehyde for aldehyde, isoamyl acteate, ethyl formate, propyl aceetate, and ethyl acetate for esters were likely to contribute to persimmon vivegar flavor.

  • PDF

Volatile Flavor Components in Pumpking Vinegar

  • Hur, Sung-Ho;Lee, Wonkoo
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.119-122
    • /
    • 1998
  • Pumpkin venegar was produced using autoclaved pumpkin juice by fermenting with cetobacter starter and ethanol at the ratio of 4 % and 10% to the volume of pumpkin juice, respectivley. Fermentation was carried out at 2$0^{\circ}C$ for 14 days followed by aging at 1$0^{\circ}C$ for 14 days. Flavor components of pumpkin vinegar was determined using GC/MS. Identified components, were 2 aldehydes (4.74%), 5 acohols (30.06%), 4 ketones (8.99%), 4 acids (16.39%), 5 alkanes (11.10%), 11 miscellaneous compounds (27.01%) and 9 unknown compounds (1.71%). Pumpkin vinegar showed very similar flavor characteristics to those of conventional wien vinegar and sherry wine vinegar in particular , acetioin, methyl acetate, and butanoic acid were typical volatile components of these three kinds of vinegar. Pumpkin vinegar showed possiblity to compete with European wine vinegar.

  • PDF

Characteristics of Volatile Flavor Compounds in Improved Kochujang Prepared with Glutinous Rice Koji during Fermentation (찹쌀고오지를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1221-1226
    • /
    • 1999
  • Volatile flavor components of glutinous rice koji kochujang made by an improved method were analyzed by using a purge and trap method during fermentation and identified with GC-MSD. Twenty-one volatile flavor components detected immediately after making kochujang including 6 alcohols, 6 esters and 2 aldehydes. Forty-six volatile flavor components including 15 alcohols, 15 esters, 5 acids, 5 aldehydes, 1 alkane, 1 amine, 1 alkene and 3 others were found in an improved kochujang after 150 day of fermentation. Twenty kinds of flavor components, 5 alcohols such as ethanol, 3-methyl-1-butanol. 2-methyl-1-propanol, 6 ester such as ethyl acetate. 2-methylpropyl acetate, ethylbutanoate, phenylacetate, 2 aldehydes and 7 others were commonly found through the fermentation period. Peak area(%) of ethenone was the highest one among the volatile flavor components at immediately after mashing, and ethyl acetate showed the highest peak area after $30{\sim}60$ day of fermentation, and ethanol showed the highest peak area after $90{\sim}120$ day of fermentation, and 3-methyl-1-butanol showed the highest peak area after 150 day of fermentation(as major components). 2-Methyl-1-propanol, 1-butanol and methylbenzene were detected in glutinous rice koji kochujang during the fermentation.

  • PDF

Migration Measurement of Volatile Organic Compounds (VOCs) from Polystyrene-made Food Containers into Distilled Water (폴리스티렌 식품용기로부터 증류수로 용출되는 휘발성유기화합물의 분석)

  • Kim, Nam-Hoon;Kim, Ae-Kyeong;Cho, Tae-Hee;Park, Kyung-Ai;Kwak, Jae-Eun;Kim, Ji-Young;Kim, Il-Young;Chae, Young-Joo;Kim, Min-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • In this study, the level of migration of 5 kinds of volatile organic compounds (VOCs) (toluene, styrene, ethylbenzene, isopropylbenzene and n-propylbenzene) into distilled water from polystyrene-made food containers was measured using Purge&Trap combined with GC/FID. The contents of the VOCs which have regulatory limits in Korea food code only for material specification were determined under three exposure conditions which were 30 min at $60^{\circ}C$, 30 min at $95^{\circ}C$ and actual situation of instant noodle intake. The calibration curve of 5 compounds showed good linearity ($^r2$ = 0.9976~0.9995) within the concentration range of 1~50 ng/mL. The limit of detection (LOD) and limit of quantification (LOQ) were validated at range of 0.041~0.092 and 0.135~0.304 ng/mL, respectively. The average migration contents of 5 compounds were below 5 ng/mL except for styrene. The average contents of styrene were highly detected at $95^{\circ}C$ for 30 min exposure (52.71 ng/mL). Under actual condition at instant noodle intake, the average contents of styrene was 17.23 ng/mL. The results demonstrated that the migration rate of VOCs was related to storage temperature and time.

Characteristics of Volatile Flavor Compounds in Kochujang Prepared with Commercial Enzyme During Fermentation (효소제를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • Kochujang was prepared for this study with raw material inoculated by commercial enzyme of amylase and protease. Volati1e compounds of Kochujang were analyzed using a purge and trap method during fermentation and identified with GC-MSD. Total 54 kinds of volatile flavor components like 16 kinds of alcohol, 16 kinds of ester, 7 kinds of acid, 4 kinds of aldehyde, 2 kinds of alkane, 1 kind of benzene, 3 kinds of ketone, 1 kind of alkene, 2 kind of amine, 1 kind of phenol, other 1 were found. Total number of volatile flavor detected right after manufacturing were 23 kinds like 3 kinds of alcohol, 6 kinds of ester, 3 kinds of aldehyde. After 30 days storage, total number of volatile flavor went up to 31 kinds with addition of 4 kinds of alcohol, 1 kind of ester. The total number of volatile flavor after 120 days storage were increased to 49 kinds. Volatile flavor compounds detected during the storage period were total 20 kinds like 6 kinds of alcohol such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 5 kinds of ester such as ethyl acetate, isoamyl acetate, ethyl butyrate, 3 kinds of aldehyde such as butanal, acetaldehyde and 6 kinds of others. Even though peak area % of flavor compound varied depends on fermentation period, ethanol, ethyl acetate, ethyl butyrate, ethenone, 2-methyl-1-propanol, 3-methyl-1-butanol were the main compounds that consisted of flavor from Kochujang which was made with enzyme treatment. Ethly acetate showed the highest result in the treatment of right after manufacturing, 3-methyl-1-butanol had up to 90th day and ether were the other days.

Changes of Volatile Flavor Compounds in Traditional Kochujang during Fermentation (재래식고추장 숙성과정 중의 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.745-751
    • /
    • 1997
  • Volatile flavor components of kochujang made from a glutinuous rice by traditional method were analyzed by using purge and trap method during fermentation, and identified with GC-MSD. Fifty-one volatile components including 19 alcohols, 13 esters, 7 acids, 3 aldehydes, 1 alkanes, 2 ketones, 2 amines, 1 benzene, 1 alkene, 1 phenol and others were found in kochujang made by traditional method. The number of volatile components detected immediately after making kochujang were 22 and increased to 41 components after 30 day of fermentation. The most number 51 of volatile components were found after 120 day of fermentation. Twenty-two volatile components were commonly found through the fermentation period such as acetic acid ethyl ester, ethanol, butanoic acid ethyl ester, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, butanoic acid and ethenone. Peak area(%) of 1-butanol was the highest one among the volatile components at immediately after mashing while ethanol showed the highest peak area after 30 day of fermentation. Although the various types of peak areas of volatile components were shown in kochujang during the fermentation days, acetic acid-ethyl ester, ethanol, butanoic acid-ethyl ester, 1-butanol, 3-methyl-1-butanol and 2-methyl-1-propanol were mainly detected during fermentation. Those might be the major volatile components in kochujang made by traditional method.

  • PDF

Chracteristics of volatile flavor compounds in improved kochujang prepared with soybean koji during fermentation (콩고오지를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1144-1150
    • /
    • 1997
  • Volatile flavor components of soybean koji kochujang made from a glutinuous rice by improved method were analyzed by using a purge and trap method during fermentation, and identified with GC-MSD. Fifty-six volatile flavor components including 16 alcohols, 15 esters, 7 acids, 4 aldehydes, 5 alkanes, 3 ketones, 1 benzene, 1 alkene, 2 phenol and 2 others were found in improved kochujang. The number of volatile flavor components detected immediately after making kochujang were 32 and increased to 46 components after 30 day of fermentation. The most number 55 of volatile flavor components were found after 90 day of fermentation. Thirty-one kinds of volatile flavor components were commonly found through the fermentation period 9 alcohols such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 8 esters such as methyl acetate, ethyl acetate, 2-methylpropyl acetate, 3 aldehydes such as butanal, acetaldehyde, furfural and 11 othesrs. Although the various types of peak areas (%) of volatile flavor components were shown in kochujang during the fermentation days, ethanol. ethyl acetate, ethyl butanoate, 2-methylpropyl acetate, 2-methyl-1-propanol and 3-methyl-1-butanol were mainly detected during fermentation. Those might be the major volatile flavor components in kochujang made by improved method. Peak area of ethanol was the highest one among the volatile flavor components at immediately after mashing and 90 day while ethyl acetate showed the highest Peak area after $30{\sim}60$ day of fermentation and 3-methyl-1-butanol showed the highest peak area after $120{\sim}150$ day of fermentation.

  • PDF