• 제목/요약/키워드: Pure yaw test

검색결과 6건 처리시간 0.015초

수치수조에서의 평면운동시험 시뮬레이션 (HPMM Simulation in Numerical Towing Tank)

  • 정두진;신기석;박선호;허재경;유병석
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.74-78
    • /
    • 2007
  • In this paper, the HPMM(Horizontal Planar Motion Mechanism) test is simulated in a numerical towing tank by using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. The results of calculation are compared with those of static drift test or rotating arm test calculated by CFD to verify the results simulated by CFD. Through comparing pure sway test of HPMM test with static drift test and pure yaw test of HPMM with rotating arm test, it is found that HPMM test can be simulated in the numerical towing tank.

  • PDF

Analysis on Hydrodynamic Force Acting on a Catamaran at Low Speed Using RANS Numerical Method

  • Mai, Thi Loan;Nguyen, Tien Thua;Jeon, Myungjun;Yoon, Hyeon Kyu
    • 한국항해항만학회지
    • /
    • 제44권2호
    • /
    • pp.53-64
    • /
    • 2020
  • This paper discusses the hydrodynamic characteristics of a catamaran at low speed. In this study, the Delft 372 catamaran model was selected as the target hull to analyze the hydrodynamic characteristics by using the RANS (Reynold-Averaged Navier-Stokes) numerical method. First, the turbulence study and mesh independent study were conducted to select the appropriate method for numerical calculation. The numerical method for the CFD (Computational Fluid Dynamic) calculation was verified by comparing the hydrodynamic force with that obtained experimentally at high speed condition and it rendered a good agreement. Second, the virtual captive model test for a catamaran at low speed was conducted using the verified method. The drift test with drift angle 0-180 degrees was performed and the resulting hydrodynamic forces were compared with the trends of other ship types. Also, the pure rotating test and yaw rotating test proposed by Takashina, (1986) were conducted. The Fourier coefficients obtained from the measured hydrodynamic force were compared with those of other ship types. Conversely, pure sway test and pure yaw test also were simulated to obtain added mass coefficients. By analyzing these results, the hydrodynamic coefficients of the catamaran at low speed were estimated. Finally, the maneuvering simulation in low speed conditions was performed by using the estimated hydrodynamic coefficients.

Planar Motion Mechanism Test of the Mobile Harbor Running in Design Speed in Circulating Water Channel

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun
    • 한국항해항만학회지
    • /
    • 제34권7호
    • /
    • pp.525-532
    • /
    • 2010
  • Mobile Harbor (MH) is a new transportation platform that can load and unload containers onto and from very large container ships at sea. It could navigate near harbors where several vessels run, or it could navigate through very narrow channels. In the conceptual design phase when the candidate design changes frequently according to the various performance requirements, it is very expensive and time-consuming to carry out model tests using a large model in a large towing tank and a free-running model test in a large maneuvering basin. In this paper, a new Planar Motion Mechanism(PMM) test in a Circulating Water Channel (CWC) was conducted in order to determine the hydrodynamic coefficients of the MH. To do this, PMM devices including three-component load cells and inertia tare device were designed and manufactured, and various tests of the MH such as static drift test, pure sway test, pure yaw test, and drift-and-yaw combined test were carried out. Using those coefficients, course-keeping stability was analyzed. In addition, the PMM tests results carried out for the same KCS (KRISO container ship) were compared with our results in order to confirm the test validity.

선박의 조종성능 추정에 있어서 시스템식별법을 이용한 PMM 시험 기법에 대한 연구 (A Study on Practical PMM Test Technique for Ship Maneuverability Using System Identification Method)

  • 이태일;권순홍
    • 한국해양공학회지
    • /
    • 제16권6호
    • /
    • pp.25-31
    • /
    • 2002
  • A system identification method is introduced to increase the prediction accuracy of a ship's maneuverability in PMM test, analysis. To improve the accuracy of linear hydrodynamic coefficients, the analysis techniques of pure sway and yaw tests are developed, and confirmed. In the analysis of sway tests, accuracy to linear hydrodynamic coefficients depends on the frequency of sway motion. To obtain nonlinear hydrodynamic coefficients for large drift angles, a combined yaw test is introduced. Using this system identification method, runs of PMM test can be reduced while retaining sufficient accuracy, compared to the Fourier integration method. Through the comparisons with sea trial results and the Fourier integration method, the accuracy and efficiency of the newly proposed system identification method, based on least square method, has been validated.

이산 웨이블렛 변환을 이용한 자유감쇠 횡요 데이타의 분리 (Decoupling of Free Decay Roll Data by Discrete Wavelet Transform)

  • Kwon, Sun-Hong;Lee, Hee-Sung;Lee, Hyoung-Suk;Ha, Mun-Keun
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.169-173
    • /
    • 2001
  • This study presents the results of decoupling of free decay roll test data by discrete wavelet transform. Free roll decay test was performed to decide the coefficients of damping terms in equation of motion. During the experiment, a slight yaw motion was found while the model was in the free roll decay motion. Discrete wavelet transform was applied to the signal to extract the pure roll motion. The results were compared to those of the Fourier transform. DWT was able to decouple the two signals efficiently while the Fourier transform was not.

  • PDF

9.77톤급 소형어선의 3자유도 구속모형시험을 통한 선속 별 운항성능 추정 (Estimation of a 9.77 G/T Small Fishing Vessel's Operating Performance Depending on Forward Speed Based on 3-DoF Captive Model Tests)

  • 김동진;안해성;조경희;여동진
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.305-314
    • /
    • 2023
  • 본 연구에서는 연안 및 항만 내에서 운항이 빈번한 총톤수 9.77톤급 소형어선을 대상으로 구속모형시험을 수행하고, 선속 별 운항성능을 추정하였다. 연안 및 항내에서는 소형 어선이 주로 중저속 운항함을 고려하여, 구속모형시험은 8노트 이하에서 수행하였다. 실선을 1/3.5 축소한 모형선을 대상으로 선형예인수조의 프로펠러 단독특성, 저항, 자항추진 시험을 통하여 실선 선속 별 저항추진성능을 추정하였다. 그리고 타 단독특성, 3자유도 정적 및 동적 HPMM 시험을 수행하고 수평면 운항모델 내 유체력 미계수들을 도출하였다. 특히 사항 및 순수선수동요시험은 2~8노트 영역에서 수행되었고, 주요 선형 유체력 미계수들이 선속에 따라 현저하게 변화함을 파악하였다. 선형 유체력 미계수들을 Froude 수에 대한 함수화 한 후, 선속 별 시뮬레이션을 통하여 대상 어선의 조종성능을 검토하였다.