• Title/Summary/Keyword: Pure gas

Search Result 763, Processing Time 0.043 seconds

Fabrication of CO2 Gas Sensors Using Graphene Decorated Au Nanoparticles and Their Characteristics (Au 나노입자가 코팅된 그래핀 기반 CO2 가스센서의 제작과 그 특성)

  • Bae, Sang-Jin;Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.197-201
    • /
    • 2013
  • This paper describes the fabrication and characterization of graphene based carbon dioxide ($CO_2$) gas sensors. Graphene was synthesized by thermal decomposition of SiC. The resistivity $CO_2$ gas sensors were fabricated by pure graphene and graphene decorated Au nanoparticles (NPs). The Au NPs with size of 10 nm were decorated on graphene. Au electrode deposited on the graphene showed Ohmic contact and the sensors resistance changed following to various $CO_2$ concentrations. Resulting in resistance sensor using pure graphene can detect minimum of 100 ppm $CO_2$ concentration at $50^{\circ}C$, whereas Au/graphene can detect minimum 2 ppm $CO_2$ concentration at same at $50^{\circ}C$. Moreover, Au NPs catalyst improved the sensitivity of the graphene based $CO_2$ sensors. The responses of pure graphene and Au/graphene are 0.04% and 0.24%, respectively, at $50^{\circ}C$ with 500 ppm $CO_2$ concentration. The optimum working temperature of $CO_2$ sensors is at $75^{\circ}C$.

Characterization of Nanostructure and Electronic Properties of Catalytically Grown Carbon Nanofiber (촉매법으로 제조한 나노탄소섬유의 미세구조 및 전기적 특성 제어 연구)

  • 김명수;우원준;송희석;임연수;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • Carbon nanofibers were prepared from the decomposition of various carbon-containing gases over pure Ni, pure Fe and their alloys with Cu. They yields, properties, and structure of carbon nanofibers obtained from the various reaction conditions were analyzed. Type of reacting gas, reaction temperature and catalyst composition were changed as the reaction variable. With Ni-Cu catalysts, the maximum yields of carbon nanofibers were obtained at temperatures between 550 and 650$^{\circ}C$ according to the reacting gas mixtures of C2H2-H2, C2H4-H2 and C3H8-H2, and the surface areas of the carbon nanofibers produced were 20∼350㎡/g. In the case of CO-H2 mixture, the rapid deposition of carbon nanofibers occurred with Fe-Cu catalyst and the maximum yield were obtained around 550$^{\circ}C$ with the range of surface areas of 140∼170㎡/g. The electrical resistivity of carbon nanofiber regarded as the key property of filler for the application of electromagnetic interference shielding was very sensitive to the type of reactant gas and the catalyst composition ranging 0.07∼1.5Ωcm at a pressure of 10000 psi, and the resistivity of carbon nanofibers produced over pure nickel catalyst were lower than those over alloy catalysts. SEM observation showed that the carbon nanofibers produced had the diameters ranging 20∼300 nm and the straight structure of carbon nanofibers changed into the twisted or helical conformation by the variation of reacting gas and catalyst composition.

  • PDF

AC Breakdown Characteristics in Ar/$N_2$ and Kr/$N_2$ Gas Mixtures (Ar/$N_2$ 및 Kr/$N_2$ 혼합 가스의 교류절연파괴 특성)

  • Lee, Sang-Woo;Kim, Lee-Kook;Kim, In-Sik;Cu, Kyung-Chul;Lee, Dong-In;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1744-1746
    • /
    • 2001
  • In this paper, we investigated the breakdown characteristics of Ar, Kr and $N_2$ gas in pure states with pressure range of 58.8-137.3[kPa] under uniform and non-uniform fields, and the measured values are compared with those in Ar/$N_2$ gas mixtures. From these results, the breakdown voltages of $N_2$ gas in uniform field were increased about 4.8 and 4.4 times than those of Ar and Kr gas, respectively. Breakdown voltages of Ar/$N_2$ gas mixtures were decreased with decreasing the mixture ratio of $N_2$ gas. Breakdown voltages of Ar(70%)/$N_2$(30%) gas mixtures in the pressure of 101.3[kPa] (gap length : 3[mm]) were increased 1.9 times than those of pure Ar gas.

  • PDF

Spectroscopic Studies of Gas Hydrates (가스 하이드레이트의 분광학적 연구)

  • Kim, Do-Youn;Lee, Heun;Seo, Yu-taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.615-617
    • /
    • 2005
  • [ $^{13}C$ ] NMR spectra were obtained for pure $CH_4$ hydrate in order to identify hydrate structure and cage occupancy of guest molecule. The NMR technique can provide both qualitative and quantitative hydrate characteristics. The moles of methane captured into pure $CH_4$ hydrate per mole of water were found to be similar to the full occupancy value. The overall results drawn from this study can be usefully applied to storage and transportation of natural gas.

  • PDF

Effects of Oxygen Contents in Shielding Gas on the Properties of Ferritic Stainless Steel GTA Weld (페라이트계 스테인리스강 GTA 용접부 특성에 미치는 보호가스 중 산소의 영향)

  • Lee, Won-Bae;Uhm, Sang-Ho;Woo, In-Su
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.93-98
    • /
    • 2010
  • The properties of GTA weld for ferritic stainless steel have been studied with different $O_2$ contents in Ar shielding gas at the constant welding speed. A small amount of $O_2$ (0.01~1.0%) was mixed in Ar shielding gas in order to improve the weld penetration. The fully penetrated GTA weld was acquired at 160A weld current shielded by pure Ar gas. Addition of oxygen larger than 0.1% made a full penetration at lower weld current than 160A. The small addition of $O_2$ in Ar shielding gas improved the penetration properties of GTA weld because the $O_2$ in the molten pool accelerated the flow of molten pool and changed the flow pattern from outward to inward direction. The impact energy and DBTT (Ductile- Brittle- Transition-Temperature) of the GTA weld shielded by Ar+$O_2$ (less 0.3%) was similar and the corrosion properties of GTA weld was slightly inferior to those of GTA weld shielded by pure Ar gas.

Sensing characteristics of Polypyrrole-based methanol sensors preparedbyin-situ vapor state polymerization

  • Linshu Jiang;Jun, Hee-Kwon;Hoh, Yong-Su;Lee, Duk-Dong;Huh, Jeung-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.137-137
    • /
    • 2003
  • Conducting PPy/PVA composite and pure PPy gas sensors were prepared by in-situ vaporstate polymerization method in a vaporization chamber under N2 condition, by exposing the pre-coated electrode with PVA/FeC13 to distilled pyrrole monomer. The various electrical sensing behaviors of both types of sensors were systematically investigated by a flow measuring system including mass flow controller (MFC) and bubbling bottle. The FT-Raman spectroscopy of vapor state polymerized PPy was identical to that of chemically polymerized PPy, confirming the same chemical structure. Both types of sensors had positive sensitivity when exposed to methanol gas. The sensitivity varied linearly with gas concentration in the range of 50ppm to 1059ppm. The detection limit of PPy/PVA sensor was believed to be as low as 10ppm. The sensitivity of PPy/PVA composite sensor was higher than that of pure PPy sensor. Both the response time and recovery time of PPy/PVA composite sensors were longer than those of pure PPy sensors. The thickness of the sensing film affected the sensitivity this way that the sensor having thinner film had higher sensitivity, indicating that the resistance of polymer film involved in the sensing behavior was bulk resistance rather than surface resistance. The reproducibility of PPy/PVA composite sensor was excellent during eight on-off cycles by switching between N2 and 3000ppm methanol gas. The sensitivity of PPy/PVA composite sensor was only maintained for two weeks, while the sensitivity of pure PPy sensor was maintained over two months.

  • PDF

A NUMERICAL STUDY ON THE HEAT AND FLUID FLOW IN A REGENERATIVE OXY-FUEL COMBUSTION SYSTEM (순산소 연소용 축열시스템 내에서의 열 유동 수치해석)

  • Kang, K.;Hong, S.K.;Noh, D.S.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • A pure oxygen combustion technology is crucial in Carbon Capture and Storage (CCS) technology especially in capturing of $CO_2$, where CCS will reduce 9 $GtCO_2$ by 2050, which is 19% of the total $CO_2$ reduction amount. To make pure oxygen combustion feasible, a regenerative system is required to enhance the efficiency of pure oxygen combustion system. However, an existing air combustion technology is not directly applicable due to the absence of nitrogen that occupies the 78% of air. This study, therefore, investigates the heat and fluid flow in a regenerative system for pure oxygen combustion by using commercial CFD software, FLUENT. Our regenerative system is composed of aluminium packed spheres. The effect of the amount of packed spheres in regenerator and the effect of presence or absence of a bypass of exhaust gas are investigated. The more thermal mass in regenerator makes the steady-state time longer and temperature variation between heating and regenerating cycle smaller. In the case of absence of bypass, the regenerator saturates because of enthalpy imbalance between exhaust gas and oxygen. We find that 40% of exhaust gas is to be bypassed to prevent the saturation of regenerator.

Analysis of Pure Refrigerant Cycle Design on C3MR Process through Driver Selection (동력 공급 장치 선택을 통한 C3MR 공정의 순수냉매 사이클 설계 분석)

  • Lee, Inkyu;Tak, Kyungjae;Lim, Wonsub;Moon, Il;Kim, Haksung;Choi, Kwangho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.27-32
    • /
    • 2013
  • Natural gas liquefaction process which is operated under cryogenic condition spends large amount of energy. Most of energy in the natural gas liquefaction process is consumed by compressors. Therefore, minimizing energy consumption of compressors is an important issue in process design and operation. Among various natural gas liquefaction processes, propane pre-cooled mixed refrigerant (C3MR) process consists of mixed refrigerant system and pure refrigerant system. In this study, to find the optimal design of pure refrigerant system, pure refrigerant cycle is simulated on different number of pressure levels and the necessary energy of each design is compared. After that, the driver selection model is applied to analyse each processes, which has different number of equipments, in terms of cost. As the result, the design using many equipments spends lower energy. Using this result, this study suggests standard of process design selection by the cost term.

The Electrical and CO Gas Sensing Characteristics of ZnO-ZrO$_2$Composite Ceramics (ZnO-ZrO$_2$복합체의 전기적 성질과 일산화탄소 가스 감응특성)

  • 김태원;정승우;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.436-439
    • /
    • 1997
  • We investigated a electrical and CO gas sensing properties of pure ZnO and ZnO-ZrO$_2$ composite ceramics. We made 0∼20mo1% ZrO$_2$added ZnO composite ceramics and observed a microstructure of the broken side of the samples. The properties of the samples were studied with temperature, composition, arid a concentration of carbon monoxid. The measured 1000ppm CO sensitivities of pure ZnO were about 1∼1.42, and that of ZnO-ZrO$_2$were about 1∼10.6. In order words, the 1000ppm CO sensitivities of ZnO-ZrO$_2$composite ceramics were about 1∼2 times larger than that of pure ZnO with temperature. The measured 250ppm, 500ppm CO sensitivities of ZnO-ZrO$_2$composite ceramics were about ∼3.28. ∼5.04, respectively.

  • PDF

Use of Nuclear Magnetic Resonance Spectroscopy in Analysis of Fennel Essential Oil

  • AbouZid, Sameh
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • A simple and rapid method based on proton nuclear magnetic resonance spectroscopy was developed for determination of trans-anethole content in fennel essential oil. Spectra of pure trans-anethole, of the pure essential oil of fennel, and of the pure oil of fennel with thymol internal standard were recorded. The signal of $H-1^/$ was used for quantification of trans-anethole. This proton signal is well separated in the proton magnetic resonance spectrum of the compound. No reference compound is needed and cheap internal standard was used. The results obtained from spectroscopic analysis were compared with those obtained by gas chromatography. Additionally, the developed method was used for determination of the type of vegetable oil used as a carrier in commercial products, which cannot be quantified as such by gas chromatography. This study demonstrates the application of proton nuclear magnetic resonance spectroscopy as a quality control method for estimation of essential oil components.