• 제목/요약/키워드: Pure Zr

검색결과 179건 처리시간 0.025초

Mg 결정립의 열적 안정성에 미치는 Zr 첨가의 영향 (Effect of Zr Addition on Thermal Stability of Grains in Mg)

  • 전중환
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.239-244
    • /
    • 2010
  • Influence of Zr addition on grain stability at elevated temperatures has been investigated for extruded pure Mg and Mg-0.25%Zr alloy. The grain size of pure Mg increases rapidly with increasing annealing temperature when isochronally annealed for 60 min from 573 to 773 K, whereas the grains are stable up to 723 K for the Zr-containing alloy. The activation energies for grain growth ($E_g$) at this temperature range were determined as 75.3 and 105.9 kJ/mole for the pure Mg and Mg-0.25%Zr alloy, respectively. TEM observations on the annealed Mg-Zr samples revealed that higher thermal stability and higher activation energy for grain growth resulting from Zr addition in Mg may well be associated with the restriction of grain growth by nano-sized Zr particles distributed in the microstructure.

열처리 조건의 변화에 따른 순수 Zr의 미세조직 및 재결정 거동 (Microstructures and Recrystallization Behavior with Heat-Treatment Conditions of Pure Zr)

  • 임윤수;위명용;김현길;최양진;정용환
    • 열처리공학회지
    • /
    • 제12권4호
    • /
    • pp.287-293
    • /
    • 1999
  • Effect of heat-treatment on the microstructure and recrystallization behavior of pure Zr was studied. The specimens were prepared under the various annealing temperatures from $400^{\circ}C$ to $800^{\circ}C$ and times from 300 to 5000 minutes after vacuum arc remelting. The recrystallization behavior was observed by a polarized optical microscope, TEM and micro-vickers hardness tester. With increasing the annealing time, the temperature region of hardness drop moved to the lower temperature region due to the recovery and recrystallization behaviors at the lower temperature. The recrystallization of cold-worked pure Zr was completed between 450 and $600^{\circ}C$. The size of recrystallized grain increased at $700^{\circ}C$ for 600min. Activation energy(Q) of pure Zr measured by the time for constant fraction technique was 78 KJ/mol.

  • PDF

ZnO-ZrO$_2$복합체의 전기적 성질과 일산화탄소 가스 감응특성 (The Electrical and CO Gas Sensing Characteristics of ZnO-ZrO$_2$Composite Ceramics)

  • 김태원;정승우;최우성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.436-439
    • /
    • 1997
  • We investigated a electrical and CO gas sensing properties of pure ZnO and ZnO-ZrO$_2$ composite ceramics. We made 0∼20mo1% ZrO$_2$added ZnO composite ceramics and observed a microstructure of the broken side of the samples. The properties of the samples were studied with temperature, composition, arid a concentration of carbon monoxid. The measured 1000ppm CO sensitivities of pure ZnO were about 1∼1.42, and that of ZnO-ZrO$_2$were about 1∼10.6. In order words, the 1000ppm CO sensitivities of ZnO-ZrO$_2$composite ceramics were about 1∼2 times larger than that of pure ZnO with temperature. The measured 250ppm, 500ppm CO sensitivities of ZnO-ZrO$_2$composite ceramics were about ∼3.28. ∼5.04, respectively.

  • PDF

다단 ECAP 공정에서 pure-Zr 의 변형거동해석 (Deformation Behavior Analysis of pure-Zr during Equal Channel Multi-Angular Pressing)

  • 노일주;권기환;채수원;권숙인;김명호;황선근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.531-536
    • /
    • 2003
  • Equal channel angular pressing (ECAP) has been employed to produce materials with ultra-fine grains that have high strength and high corrosion resistance properties. In order to obtain super plastic deformation during ECAP, multipass angular pressing is frequently employed. In this paper, three-dimensional finite element analyses have been performed to investigate the deformation behavior of pure-Zr specimen and the effects of process parameters for equal channel multi-angular pressing (ECMAP) process. The results have been compared with some experimental results

  • PDF

$Al_2O_3-ZrO_2$계에서 기계적 성질에 미치는 준안정 저앙 $ZrO_2$상의 효과 (Effect of Metastable Tetragonal $ZrO_2$ Phase on the Mechanicmal Properties in $Al_2O_3-ZrO_2$ System)

  • 김진영;황규홍;김환
    • 한국세라믹학회지
    • /
    • 제21권2호
    • /
    • pp.149-155
    • /
    • 1984
  • The effect of $ZrO_2$ dispersed phase on the mechanical properties in $Al_2O_3$-$ZrO_2$system has been studied. There are both metastable tetragonal phase and stable monoclinic phase of $ZrO_2$particles diespersed in Al2O3 matrix at room temperature. Metastable tetragonal $ZrO_2$ changes to the stable monoclinic structure within the stress field of the crack. And microcracks are formed by the expansion of $ZrO_2$during the tetragonal-monoclinic transformation on cooling. Therefore stress-induced phase transformation and inclusion-induced microcracking contribute to the mec-hanical properties of $Al_2O_3$-$ZrO_2$system. Sintered composites containing 10m/o $ZrO_2$ yield KiC values of 6.5MN/$m^{3/2}$ much greater than that of pure $Al_2O_3$ This increase results from microcrack extension and stress-induced phase transformation absor-bing energy by crack propagation. Flexural strength of composites is decreased considerably in comparison with pure $Al_2O_3$ This decrease results from microcrack as a crack former and higher porosity than pure $Al_2O_3$.

  • PDF

$ZrO_2$를 이차상으로한 복합체의 기계적 특성 (A Study on the Mechanical Properties of $ZrO_2$ Based Composite)

  • 신동우;김종희
    • 한국세라믹학회지
    • /
    • 제22권5호
    • /
    • pp.76-84
    • /
    • 1985
  • Mechanical property enhancing mechanisms of $Al_2O_3-ZrO_2$ two phase ceramic composites were studied for several compositions of different $ZrO_2$/$Al_2O_3$ ratio. Microstructural analysis of $Al_2O_3-ZrO_3$(pure) composites indicated that pre-existing microcrack due to larger $ZrO_2$ particle at grain boundary extended along alumina grain boundaries within process zone. Microcracks also nucleated when very small $ZrO_2$ particles at the grain boundaries transformed to monoclinic phase at near of main crack tip. These types of microcracks could contribute to the toughening achieved by creating additional crack surface area during crack propagation. Microstructural analyses also showed that the average grain size and abnormal grain size of $Al_2O_3$ were decreased with increasing $ZrO_2$ vol% in $Al_2O_3$ matrix. As a result it could be concluded as follows In TEX>$Al_2O_3-ZrO_3$(pure) system 1. Microcrack nucleation (stress-induced microcracking) and extension was effective mechanism for absorpiton of fracture energy 2, More narrow distribution and smaller grain size of $Al_2O_3$ due to $ZrO_2$particles mainly contributed to main-tatin the strength and hardness.

  • PDF

$Al_2O_3-ZrO_2/A_2O_3$-TZP 세라믹스의 제조 및 기계적.전기적 특성 (Mechanical and Electrical Characteristics of $Al_2O_3-ZrO_2/A_2O_3$-TZP Structural Ceramics)

  • 박재성;남효덕;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.335-338
    • /
    • 1999
  • The effect of monoclinic $ZrO_2$(pure) and tetragonal $ZrO_2$ containing 5.35wt% $Y_2$$O_3$(Y-TZP) addition on the mechanical properties and thermal shock resistance of $Al_2$$O_3$ ceramic were investigated. The addition of $ZrO_2$(m) and Y-TZP increased sintering density of $Al_2$$O_3$. The vickers hardness increased with increasing the volume fraction of Y-TZP going through a maximum at 20wt%. The hardness of the specimens was found to be depend on the sintering density. With increasing the volume fraction of $ZrO_2$(m) and Y-TZP, the fracture toughness of the composite is increased. This result may be taken as evidence that toughening of ${Al_2}{O_3}$ can also be achieved by the transformation toughening and microcrack toughening of $ZrO_2$. The property of the& shock for ${Al_2}{O_3}$-$ZrO_2$ composites was improved by increasing the volume fraction of monoclinic $ZrO_2$(pure).Grain size increased with increasing the volume fraction of $ZrO_2$.

  • PDF

Electrical Conduction in $SrZr_{0.95}Y_{0.05}O_{2.975}$ Ceramics

  • Baek, Hyun-Deok;Noh, Jin-Hyo
    • The Korean Journal of Ceramics
    • /
    • 제5권3호
    • /
    • pp.288-295
    • /
    • 1999
  • Partial conductivities contributed by electron holes, oxygen ions, and protons were caluclated in $SrZr_{0.95}Y_{0.05}O_{2.975}$, using the reported formulae derived from the defect chemistry of HTPCs. Required parameters were obtained from the graphical analysis of total conductivity variation against partial pressure of water vapor and oxygen. Predicted overall conductivities showed a reasonable agreement with experimental measurements. The conductivity of the material showed a linear increase with square root of the water vapor pressure. This increase was due to proton conduction in an almost pure ionic conductivity. The calculation of partial conductivities at $800^{\circ}C$ resulted in an almost pure ionic conductivity at $P_{02}=10^{-10}$ atm and a predominant hole conductivity at $P_{02}=10^{-10}$ atm. Pure proton conduction was not expected at this temperature, contrary to the earlier reports. Discussions were made in relation with reported thermodynamic data and defect structure of the material. It was shown that from the total conductivity dependence on water vapor pressure, the pure ionic conductivity at low oxygen partial pressures could be separated into protonic and oxygen ionic conductivity in $ZrO_2$-based HTPCs.

  • PDF

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.

인공치근용 cp-Ti에 첨가원소(Ta, Zr, Sn)가 기계적 특성 및 내식성에 미치는 영향 (Effect for Alloy Addition(Ta, Zr, Sn) on Mechanical Properties and Corrosion Resistance of cp-Ti for Dental Implants)

  • 박효병
    • 대한치과기공학회지
    • /
    • 제21권1호
    • /
    • pp.43-53
    • /
    • 1999
  • The mechannical properties and corrosion resistance of alloy added commercially pure titanium for dental implants have been investigated. Ti, To-65Zr, Ti-10.1Ta and Ti-17Sn alloys were melthed in arc furnace and the corrosion resistance of Ti alloys was evaluated by anodic polarization test. The microstructure and mechanical properties of Ti alloy were analysed by optical micrograph. hardness tester and instron. In isothermal test, Ti-10.1Ta and Ti-17Sn alloys exhibited the best oxidation resistance below $1100^{\circ}C$. Ti65Zr, Ti-10.1Ta and Ti-17Sn alloys showed better rockwell hardness compared with commercially pure. Ti As the result of the anodic polarization test in 5%HCl, it 5%HCl, it was known knows that Ti-65Zr, alloy showed a rapid decrease in current density at higher potenial in comparision with other Ti alloys.

  • PDF