• Title/Summary/Keyword: Pure Volume

Search Result 348, Processing Time 0.025 seconds

Development of Volume Modified Sorption Model and Prediction for Volumetric Strain of Coal Matrix (흡착에 의한 석탄암체의 부피변화가 고려된 흡착모델 개선 및 부피변형률 예측)

  • Kim, Sang-Jin;Sung, Won-Mo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2015
  • We proposed the improved Langmuir adsorption relations considering volume change effect of coal matrix during primary production of CBM and Enhanced-CBM with injection of carbon dioxide or CCS in coalseam but also volumetric strain. To verify this model, experimental data of pure gas adsorption such as $CO_2$, $CH_4$, and $N_2$ on coals were used to compare conventional Langmuir model with this model. From the results, we obtained that the larger adsorption capacity of coal and the higher adsorption affinity of gas, the larger error occur with Langmuir model. Using this model, however, we found not only substantially better fit in all condition but also reasonable volumetric strain of the coal matrix. We also applied this volume modified pure gas adsorption model to the IAS model to describe gas adsorption and volumetric strain for mixed gas. This modified-IAS model fitting experimental data by Hall et al(1994) improved accuracy of mixed gas adsorption calculation compared with conventional model.

Analysis of Mean Deviation in Sliding-wear-rate of Carbon Steel with Various Pearlite Volume Fractions (탄소강의 펄라이트 분율에 따른 미끄럼 마멸속도 편차 분석)

  • Kim, M.G.;Gwon, H.;Hur, H.L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • The current investigation was performed to study sliding-wear-rate deviation (wear-rate data scatter) in carbon steels with various microstructures. Pure iron, 0.2 wt. % C steel, 0.45 wt. % C steel, and bearing steel (AISI52100) were used for the investigation. These steels possess different microstructures. Microstructures of the pure iron, two carbon steel and the bearing steel were full ferrite, ferrite + pearlite and full pearlite, respectively. Depending on the carbon content, the carbon steel had different pearlite-volume fractions. Dry sliding wear tests of the steel were conducted using a ball-on-disk wear tester at a sliding speed of 0.1 m/s using a bearing ball (AISI52100) as a counterpart. Applied load and sliding distance were 100 N and 300 m, respectively. More than three (up to twelve) tests were conducted for each steel under the same conditions, and the mean deviations in the wear rate of the steel (microstructure) were compared. The wear-rate deviation in the steel with ferrite + pearlite microstructure was higher than that with ferrite microstructure, and the deviation decreased with the increase of pearlite volume fraction. The pure iron and the bearing steel specimens showed much less deviation. The high deviation observed from the ferrite + pearlite steel was attributed to irregular subsurface-crack nucleation and growth at the interface between the two micro constituents (ferrite and pearlite) during the wear test.

Fabrication of SiCp/Al Alloy Composites by In-situ Vacuum Hot Press Process (In-situ Vacuum Hot Press 공정을 이용한 SiCp/Al 복합재료의 제조)

  • Choe, Se-Won;Hong, Seong-Gil;Kim, Yeong-Man;Jang, Si-Yeong;Gang, Chang-Seok
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.590-598
    • /
    • 2001
  • SiCp/pure Al and SiCp/2024Al MMCs were fabricated by in-situ VHP process designed specially just in this study which is composed of the vacuum hot press at range from R.T. to $500^{\circ}C$ and the continuous extrusion without canning process at $520^{\circ}C$. It was investigated the effect of SiC particle size, volume fraction and extrusion ratio on the tensile properties and micro structure in auf composites. In case of the 10:1 extrusion ratio, but SiCp/pure Al and SiCp/2024Al composites were shown a sound appearance and a good micro structure without crack of SiCp as well as uniform distribution of SiCp. However, in case of the 16:1 extrusion ratio, the number of cracked SiC particles more than increased in a higher volume fraction composite and 2024Al matrix composite compared with pure Al matrix one. The tensile strength of the composites reinforced smaller SiCp was higher than that of the bigger SiCp reinforced in same volume fraction and extrusion ratio.

  • PDF

Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites (2-D Braided Textile 금속복합재료의 성형과 특성 해석)

  • 이상관;김효준;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

Consolidation of Iron Nanopowder by Nanopowder-Agglomerate Sintering at Elevated Temperature

  • Lee, Jai-Sung;Yun, Joon-Chul;Choi, Joon-Phil;Lee, Geon-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The key concept of nanopowder agglomerate sintering (NAS) is to enhance material transport by controlling the powder interface volume of nanopowder agglomerates. Using this concept, we developed a new approach to full density processing for the fabrication of pure iron nanomaterial using Fe nanopowder agglomerates from oxide powders. Full density processing of pure iron nanopowders was introduced in which the powder interface volume is manipulated in order to control the densification process and its corresponding microstructures. The full density sintering behavior of Fe nanopowders optimally size-controlled by wet-milling treatment was discussed in terms of densification process and microstructures.

Densification Behavior of Mixed Metal Powders under High Temperature (혼합 금속 분말의 고온 치밀화 거동)

  • Jo, Jin-Ho;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.735-742
    • /
    • 2000
  • Densification behaviors of mixed metal powder under high temperature were investigated. Experimental data of mixed copper and tool steel powder with various volume fractions of Cu powder were obtained under hot isostatic pressing and hot pressing. By mixing the creep potentials of McMeeking and co-workers and of Abouaf and co-workers originally for pure powder, the mixed creep potentials with various volume fractions of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densification of mixed powder under hot isostatic pressing and hot pressing. Finite element calculations by using the creep potentials of Abouaf and co-workers agreed reasonably well with experimental data, however, those by McMeeking and co-workers underestimate experimental data as observed in the case of pure metal powders.

Changes in the Red Cell Volume and the Plasma Chloride Level under the High $CO_2$ Concentration in vitro (고농도(高濃度)의 $CO_2$가 적혈구용적(赤血球容積) 및 혈장(血漿) Choloride 치(値)에 미치는 영향(影響))

  • Kim, Sung-Jo;Lee, Jae-Bok;Lee, Woo-Suck;Chung, Pock-Tuck
    • The Korean Journal of Physiology
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 1970
  • The changes in the red cell volume and the plasma chloride level were measured when the blood $CO_2$ content was altered by equilibration with the atmospheric air or pure $CO_2$ for 20 minutes. The red cell volume was expressed in terms of hematocrit and mean corpuscular volume (M.C.V.). The results obtained were as follows. 1) On equilibration with the atmospheric air, the MCV and the plasma chloride level were $91.6{\pm}1.26\;c.{\mu}$ and $110.7{\pm}6.28mEq/L.$ respectively. 2) On equilibration with pure $CO_{2}$, the MCV and the plasma chloride level were $109.6{\pm}2.0\;c.{\mu}$ and $90.7{\pm}5.17\;mEq/L.$ respectively. 3) When the blood was subjected to equilibration with the atmospheric for air 20 minutes after equilibration with pure $CO_{2}$ for the same period of time the MCV and the plasma chloride level were $89.9{\pm}6.34\;c.{\mu}$ and $100.3{\pm}5.50\;mEq/L.$ respectively. From the above results it can be concluded that an increase of the blood $CO_2$ content in the experimental condition causes definitely a decrease of the plasma chloride level and a concomitant increase of the red cell volume, and that a decrease of the blood content $CO_2$ in the experimental condition causes definitely an increase of the plasma chloride level and a concomitant decrease of the red cell volme. Apparantly there exists a parallel relationship between the extent of the decrease of the plasma chloride level and that of the increase of the red cell volume when the blood $CO_2$ content increased in the experimental condition. When the blood $CO_2$ content decreased, the extent of the decrease of the red cell volume exceeds that of the increase of the plasma chloride level.

  • PDF

The Behavior of Silt due to Volume Deformation Tendency (체적변형 경향에 따른 실트의 거동)

  • Jeong, Sang Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.255-260
    • /
    • 1993
  • The behavior of pure silt was investigated by using an automated triaxial testing device. The stress-strain behavior of silt due to the volume deformation tendency was compared with the behavior of clay prior to failure and behavior at failure under monotonic undrained compression and extension conditions. A pure silica flour was chosen to form samples. The isotropically normally-consolidated samples with 450 kPa of effective mean confining pressure and overconsolidated samples through unloading were tested. Based on the experimental results, it was qualitatively identified that the undrained strength of normally-consolidated silt increases due to its dilatant nature which is not seen in clay. Also the overconsolidated silt shows a significantly different behavior under the monotonic loadings due to the volume deformation tendency.

  • PDF

Friction and Wear Characteristics of Silica/Epoxy Composites for various Particle Size (입자지름의 변화에 따른 실리카 복합재료의 마찰 및 마모 특성)

  • Koh, Sung-Wi;Kim, Hyung-Jin;Kim, Kae-Dong;Kim, Chang-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, the friction and wear characteristics of pure epoxy and silica-filled epoxy resin composites with average silica particle diameter of $6-33{\mu}m$ were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials against SiC abrasive paper were determined experimentally. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on diameter of the silica particle for all these composites. The sliding wear tests of the materials demonstrated that the friction coefficient and the wear rate of silica filled epoxy composites were lower than those of the pure epoxy. silica filled epoxy.

  • PDF

Production of Chiral Styrene Oxide by Microbial Enantioselective Hydrolysis Reaction (미생물 입체선택성 가수분해 반응을 이용한 광학활성 Styrene Oxide 생산)

  • 윤성준;이은열
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.630-634
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis, and various biological methods have been investigated for their production. In this work, the enantioselective resolution of racemic styrene oxide was investigated using Aspergillus niger sp. for the production of optically pure (S)-styrene oxide. The enantioselectivity and initial hydrolysis rates of the racemic substrate were highly dependent of the pH, temperature, and the volume ratio of cosolvent. Experimental sets of pH, temperature, and the volume ratio of cosolvent were investigated using a central composite experimental design, and reaction conditions were optimized by response surface analysis. The optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4%(v/v), respectively, and optically pure (S)-styrene oxide (>99% ee) was obtained at 35% yield using this microbial enantioselective hydrolysis reaction.

  • PDF