• Title/Summary/Keyword: Pure Potential

Search Result 451, Processing Time 0.027 seconds

Prognostic Analysis of Stage I Non-Small Cell Lung Cancer Abutting Adjacent Structures on Preoperative Computed Tomography

  • Soohwan Choi;Sun Kyun Ro;Seok Whan Moon
    • Journal of Chest Surgery
    • /
    • v.57 no.2
    • /
    • pp.136-144
    • /
    • 2024
  • Background: Early non-small cell lung cancer (NSCLC) that abuts adjacent structures requires careful evaluation due to its potential impact on postoperative outcomes and prognosis. We examined stage I NSCLC with invasion into adjacent structures, focusing on the prognostic implications after curative surgical resection. Methods: We retrospectively analyzed the records of 796 patients who underwent curative surgical resection for pathologic stage IA/IB NSCLC (i.e., visceral pleural invasion only) at a single center from 2008 to 2017. Patients were classified based on tumor abutment and then reclassified by the presence of visceral pleural invasion. Clinical characteristics, pathological features, and survival rates were compared. Results: The study included 181 patients with abutting NSCLC (22.7% of all participants) and 615 with non-abutting tumors (77.3%). Those with tumor abutment exhibited higher rates of non-adenocarcinoma (26.5% vs. 9.9%, p<0.01) and visceral/lymphatic/vascular invasion (30.4%/33.1%/12.7% vs. 8.5%/22.4%/5.7%, respectively; p<0.01) compared to those without abutment. Multivariable analysis identified lymphatic invasion and male sex as risk factors for overall survival (OS) and disease-free survival (DFS) in stage I NSCLC measuring 3 cm or smaller. Age, smoking history, vascular invasion, and recurrence emerged as risk factors for OS, whereas the presence of non-pure ground-glass opacity was a risk factor for DFS. Conclusion: NSCLC lesions 3 cm or smaller that abut adjacent structures present higher rates of various risk factors than non-abutting lesions, necessitating evaluation of tumor invasion into adjacent structures and lymph node metastasis. In isolation, however, the presence of tumor abutment without visceral pleural invasion does not constitute a risk factor.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

RF and Optical properties of Graphene Oxide

  • Im, Ju-Hwan;Rani, J.R.;Yun, Hyeong-Seo;O, Ju-Yeong;Jeong, Yeong-Mo;Park, Hyeong-Gu;Jeon, Seong-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

A Study on Selective Adsorption of Phenanthrene Dissolved in Triton X-100 Solution using Activated Carbons (활성탄을 이용한 Triton X-100 용액에서의 phenanthrene의 선택적 흡착에 관한 연구)

  • Ahn, Chi-Kyu;Kim, Young-Mi;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2006
  • Polycyclic aromatic hydrocarbons (PAHs) are widespread soil contaminants and major environmental concerns. PAHs have extremely low water solubility and are strongly sorbed to soil. A potential technology for remediation of PAHcontaminated soils is a soil washing with surfactant solutions. While the use of surfactants significantly enhances the performance of soil remediation, operation costs are increased. Selective adsorption of PAHs by activated carbons is proposed to reuse the surfactants in the soil-washing process. The adsorption isotherms of pure chemicals (Triton X-100 and phenanthrene) onto three granular activated carbons were obtained. The selective adsorption of phenanthrene in mixed solution was examined at various concentrations of phenanthrene and Triton X-100. The selectivity results were discussed with pore size distribution of activated carbons and molecular sizes of phenanthrene and the Triton X-100 monomer. The selectivity for phenanthrene was much larger than 1 regardless of the particle size of activated carbons. The selective adsorption using activated carbons with proper pore size distribution would greatly reduce the material cost for the soil washing process by the reuse of the surfactants.

Effects of Ginseng Saponins on Growth and Synthesis of Aflatoxin by Aspeygillus parusiticus R-716 (인삼Saponin의 Aspergilius parasiticus R-716의 생육 및 Aflatoxin생성에 미치는 영향)

  • 이광승;장진규
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 1986
  • The potential effects of ginseng saponin on the growth, aflatoxin production, and physicochemical characteristics of Aspergillus parasiticus R-716 were investigated and the results obtained were summarized as follows. The pH values of culture filtrate were increased with an increase of addition amount of saponins, the amount of mycelium was increased up to l19% by the addition of 0.01% protopanaxatriol saponin (triol). Amount of aflatoxin was increased in proportion as the bright yellow color of chloroform extract of culture filtrate was intensified. There was no difference in sporulation by the addition of 0.02% saponins, however, the sporulation was gradually decreased as the addition concentration of saponins increased. Aflatoxin production was reduced to the level of 8% by the addition of crude saponin, but production of aflatoxin B1 and B2 were inhibited by 56% and 8% with the addition of 0.5% pure saponin. The production of aflatoxin B. was increased by the addition of 0.5% trios saponin, and by the addition of 0.02% biol saponin, aflatoxin G, production reached to the maximum and thereafter it was decreased.

  • PDF

Biocontrol of Red Pepper Using Mixed Culture of Antagonistic Bacterium and Phosphate Solubilizing Yeast (항진균 세균과 난용성 인산염 가용화 효모의 혼합 배양액을 이용한 고추 병해의 생물학적 방제)

  • Lee, Gun Woong;Min, Byung-Dae;Park, Sujeong;Jheong, Weonhwa;Go, Eun Byeul;Lee, Kui-Jae;Chae, Jong-Chan
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.398-402
    • /
    • 2013
  • This study was to investigate beneficial effects of microbial mixture on red pepper which was capable of promoting plant growth by solubilizing insoluble phosphate as well as protecting plants from pathogenic attack. Saccharomyces sp. L13 was isolated for phosphate solubilizing activity on aluminium phosphate, tricalcium phosphate, calcium hydrophosphate, and magnesium hydrophosphate. On the other hand, Bacillus sp. L32 was isolated for antagonistic activity against Phytophthora capsisi and Colletotrichum gloeosporioides, causing Phytophthora blight and Anthracnose disease in pepper, respectively. The strain L32 exhibited antagonistic activities both under dual culture assays and detached leaves assays. The each strain under the condition of mixed cultivation exhibited the same growth rates as one under pure cultivation. In greenhouse study, the mixed culture showed the both effect of plant growth promotion and reduction of disease symptom development against P. capsisi and C. gloeosporioides providing a potential as effective microbial agent for plant husbandry.

Effect of Experiential Value on Customer Satisfaction and e-WOM under O2O Commerce (O2O 커머스 모델에 기반한 경험가치가 고객만족 및 온라인 구전에 미치는 효과에 관한 실증연구)

  • Shang, Yu-Fei;Chen, Yao;Kim, Hong-Seop
    • Journal of Distribution Science
    • /
    • v.15 no.8
    • /
    • pp.75-86
    • /
    • 2017
  • Purpose - The online-to-offline (O2O) business model has brought considerable changes to the traditional Chinese business model. The main difference between O2O and pure online consumption is that O2O offers a richer experience and word-of-mouth. it is easier to trigger online word-of-mouth. However, few scholars have been concerned about the impact of experiential value on customer satisfaction and online word-of-mouth (e-WOM) in the study of O2O. This study takes the O2O business model in China's catering industry as its research object and uses structural equation modelling to analyze the impact of online and offline experiential values on customer satisfaction and e-WOM. Research design, data, and methodology - According to previous researches, consumer experiential value is mainly divided into return on investment (economy and efficiency), service excellence, playfulness and aesthetics. According to the characteristics of O2O in China's catering industry, this study divides the online experience value into efficiency and economy (return on investment). The offline part is divided into return on investment (economy and efficiency), service excellence, playfulness and aesthetics. Using a web-based survey, we collected 303 valid samples. Structural equation modelling was used to create the research model. Results - The results show that efficiency (online) and service excellence (offline) have a significant effect on customer satisfaction. Economics (online) and playfulness (offline) have a positive impact on customers' e-WOM. In addition, the higher the customer satisfaction, the greater the positive impact on the spread by word of mouth. However, aesthetic(offline) and return on investment(offline) have no significant impact to customer satisfaction and e-WOM. Conclusions - The study findings show that the key to boost customer satisfaction in the catering industry is to improve product quality and service. Although traditional competitive strategies such as online discount have been questioned by many scholars about their decreasing effectiveness, they are indispensable means to attract online traffic and trigger e-WOM. The traditional enterprises can reconstruct traditional business processes through the O2O model to effectively improve customer satisfaction and word of mouth by improving the experiential value of economy and efficiency. Additionally, it can be used as the natural advantages of online communication to induce customers to engage in word of mouth and attract more potential customers.

Study on the Manufacturing Techniques of Metallic Ornament of Treasure 930, the Staffs of Yi Gyeong-seok (보물 제930호 이경석 지팡이에 사용된 장석의 제작기법 고찰)

  • Lee, Jae-sung;Jeon, Ik-hwan
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.309-318
    • /
    • 2015
  • The staff given with chair to Yi Gyeong-seok, senior official over 70 years old by King Hyeonjong of Joseon Dynasty is representative handcraft of Joseon Dynasty. Results of analysis on the metallic decoration show that the metallic ornament of the end part which is connected to the spade was made by rolling of iron plate and brass plating. The plated part is limited to the ornament of the end part connected to the spade and the plating was not applied to the spade. Brass including 20% zinc was used for the connecting part of guard while brass gilded iron was used for the spade. This suggests that the tone of the connecting part of the guard and the spade was not different for reason of visual harmonization. Potential applied plating method can be amalgam, dippping in molten brass, and brushing but the analysis result suggests that dipping in molten brass method is the most likely accepted method. The brass guard of knife was joined by tin-lead solder. Rivet used to fix the blade was made by pure iron as an optimum material which satisfies flexibility and strength.