• Title/Summary/Keyword: Pure Co

Search Result 870, Processing Time 0.03 seconds

Thermophysical Properties of CO2 and CO2-Hydrate Mixture and In-Tube Heat Transfer Characteristics (CO2-Hydrate와 CO2 가스 혼합물의 전달물성과 관내측 열전달계수 및 압력강하 예측)

  • Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.233-239
    • /
    • 2013
  • The Thermophysical properties of thermal conductivity, viscosity, and heat capacity for $CO_2$ slurry ($CO_2$ gas and $CO_2$-hydrate mixture) having a high gas phase volume fraction were predicted using the conventional mixture models and the TRAPP model under hydrate formation conditions. Based on the calculated thermophysical properties, the heat transfer coefficient and pressure drop of the $CO_2$ slurry in the tube were predicted. The thermal conductivity of $CO_2$ slurry ranged from 0.02 to 0.2 W/m-K, and the mixture viscosity was larger than that of pure $CO_2$ by 1.9~2.7 times. The heat capacity of $CO_2$ slurry ranged from 63 to 68% of that for pure $CO_2$. The predicted heat transfer coefficient of $CO_2$ slurry was 6 times higher than that of pure $CO_2$. In the separate model, the estimated pressure drop increased with an increase of $CO_2$-hydrate mole fraction, and was 60% of that of pure $CO_2$.

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

HPMM Simulation in Numerical Towing Tank (수치수조에서의 평면운동시험 시뮬레이션)

  • Jung, Doo-Jin;Shin, Ki-Seok;Park, Sun-Ho;Heo, Jae-Kyung;Yu, Byeong-Suk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.74-78
    • /
    • 2007
  • In this paper, the HPMM(Horizontal Planar Motion Mechanism) test is simulated in a numerical towing tank by using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. The results of calculation are compared with those of static drift test or rotating arm test calculated by CFD to verify the results simulated by CFD. Through comparing pure sway test of HPMM test with static drift test and pure yaw test of HPMM with rotating arm test, it is found that HPMM test can be simulated in the numerical towing tank.

  • PDF

EVIDENCES OF EPISODIC MASS ACCRETION IN LOW-LUMINOSITY EMBEDDED PROTOSTARS

  • Kim, Hyo Jeong;Evans, Neal J. II;Dunham, Michael M.;Lee, Jeong-Eun;Pontoppidan, Klaus M.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.177-179
    • /
    • 2012
  • We present Spitzer IRS spectroscopy of $CO_2$ ice toward 19 young stellar objects (YSOs) with luminosity lower than $1L_{\odot}$. Pure $CO_2$ ice forms only at elevated temperatures, T > 20 K, and thus at higher luminosities. Current internal luminosities of YSOs with L < $1L_{\odot}$ do not provide such conditions out to radii of typical envelopes. Significant amounts of pure $CO_2$ ice would signify a higher past luminosity. We analyze $15.2{\mu}m$ $CO_2$ ice bending mode absorption lines in comparison to the laboratory data. We decompose pure $CO_2$ ice from 12 out of 19 young low luminosity sources. The presence of the pure $CO_2$ ice component indicates high dust temperature and hence high luminosity in the past. The sum of all the ice components (total $CO_2$ ice amount) can be explained by a long period of low luminosity stage between episodic accretion bursts as predicted in an episodic accretion scenario. Chemical modeling shows that the episodic accretion scenario explains the observed total $CO_2$ ice amount best.

Effects of $CO_{2}$ Recirculation on Turbulent Jet Diffusion Flames with Pure Oxygen (이산화탄소 재순환이 순산소 난류제트 확산화염에 미치는 영향)

  • Cha, Min-Suk;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • Characteristics of methane jet diffusion flames using pure oxygen with recirculating $CO_{2}$ as an oxidizer were investigated experimentally. A coflow burner was considered, and the diameter of confinement was larger than that of the coflow. No stabilized flame could be observed over 75% of $CO_{2}$ volume percent. A comparison between air and $O_{2}/CO_{2}$ mixture was made in terms of liftoff velocity, flame liftoff height, and blowout conditions. As results, more stable flame could be observed with $O_{2}/CO_{2}$ mixture for the case of having similar flame temperature.

  • PDF

Effects of W Contents in Co Matrix of the Thermal Sprayed WC-Co on the Corrosion Behavior in Molten Zinc

  • Seong, Byeong-Geun;Hwang, Sun-Young;Kim, Kyoo-Young;Lee, Kee-Ahn
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.147-153
    • /
    • 2007
  • This study sought to investigate the reaction of Co-binder containing tungsten with molten zinc. Four kinds of Co-W alloys (pure, 10%W, 20%W, 30%W) were prepared using the powder metallurgy method. The specimens were immersion-tested in molten pure zinc baths at $460^{\circ}C$. To evaluate the corrosion property in molten zinc, the weight loss of the specimen was measured after the immersion tests at different immersion times (10~300 min.). Co-10%W alloys, compared with pure cobalt, showed no effect of tungsten addition on the reaction rate in molten zinc. The relationship between the weight loss and the square root of immersion period represents a straight line in both pure cobalt and Co-10%W alloy. The Co-Zn reaction layer in Co- 1O%W alloy consists of $\gamma2$, $\gamma1$, $\gamma$ and ($\beta1$ phases. The rate of weight loss significantly increases and the weight loss behavior is not well accord with the linear relationship as the tungsten content in the Co-W alloy increases. The $\beta1$ layer was not formed on the Co-20%W alloy and neither was a stable Co-Zn intermetallic compound layer found on the Co-30%W alloy. The main cause of increase in reaction rate with increasing tungsten content is related with the instability of the Co-Zn reaction phases as seen on micro-structural analysis.

Photocatalytic Decomposition of Methyl Orange over Alkali Metal Doped LaCoO3 Oxides (알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응)

  • Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.718-722
    • /
    • 2017
  • We have investigated the photocatalytic activity for the decomposition of methyl orange on the pure $LaCoO_3$ and metal ion doped $LaCoO_3$ perovskite-typeoxides prepared using microwave process. In the case of pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts, the formation of the perovskite crystalline phase was confirmed regardless of the preparation method. From the results of UV-Vis DRS, the pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts have the similar absorption spectrum up to visible region. The chemisorbed oxygen plays an important role on the photocatalytic decomposition of methyl orange and the higher the contents of chemisorbed oxygen, the better performance of photocatalyst.

The Electrical and CO Gas Sensing Characteristics of ZnO-ZrO$_2$Composite Ceramics (ZnO-ZrO$_2$복합체의 전기적 성질과 일산화탄소 가스 감응특성)

  • 김태원;정승우;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.436-439
    • /
    • 1997
  • We investigated a electrical and CO gas sensing properties of pure ZnO and ZnO-ZrO$_2$ composite ceramics. We made 0∼20mo1% ZrO$_2$added ZnO composite ceramics and observed a microstructure of the broken side of the samples. The properties of the samples were studied with temperature, composition, arid a concentration of carbon monoxid. The measured 1000ppm CO sensitivities of pure ZnO were about 1∼1.42, and that of ZnO-ZrO$_2$were about 1∼10.6. In order words, the 1000ppm CO sensitivities of ZnO-ZrO$_2$composite ceramics were about 1∼2 times larger than that of pure ZnO with temperature. The measured 250ppm, 500ppm CO sensitivities of ZnO-ZrO$_2$composite ceramics were about ∼3.28. ∼5.04, respectively.

  • PDF

Fabrication of CO2 Gas Sensors Using Graphene Decorated Au Nanoparticles and Their Characteristics (Au 나노입자가 코팅된 그래핀 기반 CO2 가스센서의 제작과 그 특성)

  • Bae, Sang-Jin;Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.197-201
    • /
    • 2013
  • This paper describes the fabrication and characterization of graphene based carbon dioxide ($CO_2$) gas sensors. Graphene was synthesized by thermal decomposition of SiC. The resistivity $CO_2$ gas sensors were fabricated by pure graphene and graphene decorated Au nanoparticles (NPs). The Au NPs with size of 10 nm were decorated on graphene. Au electrode deposited on the graphene showed Ohmic contact and the sensors resistance changed following to various $CO_2$ concentrations. Resulting in resistance sensor using pure graphene can detect minimum of 100 ppm $CO_2$ concentration at $50^{\circ}C$, whereas Au/graphene can detect minimum 2 ppm $CO_2$ concentration at same at $50^{\circ}C$. Moreover, Au NPs catalyst improved the sensitivity of the graphene based $CO_2$ sensors. The responses of pure graphene and Au/graphene are 0.04% and 0.24%, respectively, at $50^{\circ}C$ with 500 ppm $CO_2$ concentration. The optimum working temperature of $CO_2$ sensors is at $75^{\circ}C$.

Debinding Process Using Supercritical Fluids in Metal Powder Injection Molding (분말사출성형에서 초임계유체를 이용한 탈지공정)

  • 김용호;임종성;이윤우;박종구
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.6-14
    • /
    • 2003
  • The purpose of the present study is to investigate the method decreasing debinding time as well as lowering operation condition than pure supercritical $CO_2$ debinding by using cosolvent or binary mixture of propane + $CO_2$. First method is to add cosolvent, such as n-hexane, DCM, methanol, 1-butanol, in supercritical $CO_2$. In case of adding cosolvent, we were found the addition of non-polar cosolvent (n-hexane) improves dramatically the binder removal rate (more than 2 times) compared with pure supercritical $CO_2$ debinding, second method is to use mixture of supercritical propane + $CO_2$, as solvent. In case of using mixture of supercritical propane + $CO_2$, the rate of debinding speeded up with increasing of pressure and concentration of propane at 348.15 K. It was found that addition of cosolvent (e.g., n-hexane, DCM) and binary mixture propane + $CO_2$ for supercritical solvent remarkably improved binder removal rate for the paraffin wax-based binder system, in comparison with using pure supercritical $CO_2$.