• Title/Summary/Keyword: Punching failure

Search Result 128, Processing Time 0.025 seconds

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Failure mechanisms of hybrid FRP-concrete beams with external filament-wound wrapping

  • Chakrabortty, A.;Khennane, A.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.57-75
    • /
    • 2014
  • This paper presents an analysis of the results of an experimental program on the performance of a novel configuration of a hybrid FRP-concrete beam. The beam section consists of a GFRP pultruded profile, a CFRP laminate, and a concrete block all wrapped up using filament winding. It was found that the thickness of the concrete block and the confinement by the filament-wound wrapping had a profound effect on the energy dissipation behaviour of the beam. Using a shear punching model, and comparing the predicted results with the experimental ones, it was found that beyond a given value of the concrete block thickness, the deformational behaviour of the beam shifts from brittle to ductile. It was also found that the filament-wound wrap had many benefits such as providing a composite action between the concrete block and the GFRP box, improving the stiffness of the beam, and most importantly, enhancing the load carrying ability through induced confinement of the concrete.

An Experimental Study on the Analysis of Behavior Characteristics of the NDB Soil Nailing System (NDB 쏘일네일링 시스템의 거동특성 평가에 관한 실험적 고찰)

  • 김홍택;정성필;박시삼;전경식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.521-528
    • /
    • 2003
  • In this study, a newly modified soil nailing technology called as the NDB(New Down and Board) soil nailing system is introduced. To improve the trafficability, workability, and economical efficiency, SMC(Sheet Molding Compound) board is adopted instead of using the concrete block facing. The SMC board has a distinct advantage of showing a fine view by directly coating with any kind of environmental photos. Composite material properties of the SMC board and cement grout are distinguished features of the NDB soil nailing system. In the present study, both laboratory tests(bending and punching failure tests) and field pull-out tests are carried out to analyze the behavior characteristics of the NDB soil nailing system, including the stress and strain distribution.

  • PDF

Formability Evaluation of Advanced High-strength Steel Sheets in Role Expansion Based on Combined Continuum-Fracture Mechanics (복합 연속체 파괴 역학에 기초한 초고강도강 판재의 구멍 넓힘 시험 성형성 평가)

  • Ma, N.;Park, T.;Kim, D.;Yoo, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.227-230
    • /
    • 2009
  • In order to predict failure behavior of advanced high-strength steel sheets (AHSS) in hole expansion tests, damage model was developed considering surface condition sensitivity (with specimens prepared by milling and punching: 340R, TRIP590, TWIP940). To account for the micro-damage initiation and evolution as well as macro-crack formation, the stress triaxiality dependent fracture criterion and rate-dependent hardening and ultimate softening behavior were characterized by performing numerical simulations and experiments for the simple tension and V-notch tests. The developed damage model and the characterized mechanical property were incorporated into the FE program ABAQUS/Explicit to perform hole expansion simulations, which showed good agreement with experiments.

  • PDF

A Study on Slot Grinding for Lead Pin Punching Die (리드 핀 제조용 펀치 금형의 홈 가공에 관한 연구)

  • 이용찬;정상철;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.106-113
    • /
    • 2000
  • One of the recent changes in machining technology is rapid application of micro- and high precision grinding processes. A fine groove generation is necessary for the fabrication of optics, electronics and semiconductor parts. Slot grinding is very efficient for the generation of micro ordered groove with hard and brittle materials. In the process of slot grinding, chipping at the sharp edges and microcracks of the ground grooves are inevitable defects. Chipping should be reduced for the improvement of surface integrity. Mechanical contact with diamond grits causes microcracks at the grooves. This damage resides subsurface, and can be the cause of failure of the punch die. This paper deals with chipping generation at the sharp edges, surface integrity of side groove and fracture strength is related to the microcracks in the slot grinding.

  • PDF

Lattice Shear Reinforcement for Earthquake-Resistance of Slab-Column Connection. (슬래브-기둥 접합부의 내진성능을 위한 래티스 전단보강)

  • Kim, You-Ni;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.26-29
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In present study, experimental tests were performed to study the capacity of slab-column connections strengthened with lattice, stud rail, shear band and stirrup under gravity and cyclic lateral load. Among them, the capacity of the specimens with lattice are superior to the others due to the truss action of the lattice bars and dowel action of the longitudinal bars as well as the shear resistance of the web re-bar. On the other hand, the strengths of the specimens with stud rail, shear band and stirrup are lower than the estimated strength by the ACI, therefore design formulas of the ACI are needed to revise.

  • PDF

An Experimental Study on Lateral Load of Vertically Suspended Shear Reinforcement for Reinforced Concrete Flat Plate slab (철근콘크리트 무량판 슬래브의 수직걸림형 전단보강재의 수평하중에 대한 실험적 연구)

  • Woo, Jong-Yeol;Kim, Jae-Ung;Yoo, Choong-Geun;Kang, Su-Min;Lee, Byeong-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.78-79
    • /
    • 2014
  • This study is concerned with the VS shear reinforcement that it can be installed easily in filed as product at the factory and seismic performance can be achieved. The method of study is as follows. first, we researched constructability and economy of existing construction method. Secondly, we made specimen and were examined structural performance tests in order to verify the performance of the shear reinforcement for lateral force like seismic load. As a result, developed VS shear reinforcement increased in shear strength and stiffness of reinforcement, structural safety is judged to be increased.

  • PDF

Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles (모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동)

  • Yoo, Nam-Jae;Jeong, Gil-Soo;Park, Byung-Soo;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF

Experimental studies on behaviour of bolted ball-cylinder joints under axial force

  • Guo, Xiaonong;Huang, Zewei;Xiong, Zhe;Yang, Shangfei;Peng, Li
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.137-156
    • /
    • 2016
  • Due to excellent advantages such as better illuminative effects, considerable material savings and ease and rapidness of construction, the bolted ball-cylinder joint which is a new type joint system has been proposed in space truss structures. In order to reveal more information and understanding on the behaviour of bolted ball-cylinder joints, full-scale experiments on eight bolted ball-cylinder joint specimens were conducted. Five joint specimens were subjected to axial compressive force, while another three joint specimens were subjected to axial tensile force. The parameters investigated herein were the outside diameter of hollow cylinders, the height of hollow cylinders, the thickness of hollow cylinders, ribbed stiffener and axial force. These joint specimens were collapsed by excessive deformation of hollow cylinders, punching damage of hollow cylinders, evulsion of bolts, and weld cracking. The strain distributions on the hollow cylinder opening were mainly controlled by bending moments. To improve the ultimate bearing capacity and axial stiffness of bolted ball-cylinder joints, two effective measures were developed: (1) the thickness of the hollow cylinder needed to be thicker; (2) the ribbed stiffener should be adopted. In addition, the axial stiffness of bolted ball-cylinder joints exhibited significant non-linear characteristics.

Structural Performance of Column-Slab Connection in Flat Plate System Using High Strength Concrete (고강도 콘크리트를 사용한 플랫 플레이트 구조의 기둥·슬래브 접합부 구조성능)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.97-105
    • /
    • 2006
  • The reinforced concrete flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problem in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab connection. Since the use of high strength concrete recently has become in practice for reinforced concrete structures, it is highly desired to establish the structural design method for flat plate construction using high strength concrete. In this paper, interior column-slab connection constructed with high strength concrete were tested under lateral and gravity loads to evaluate their strength and behavior. The test parameters were slab reinforcement ratio and the gravity load levels.