• 제목/요약/키워드: Punch radius

검색결과 108건 처리시간 0.022초

Mg 온간성형을 위한 십자형상 금형의 가열/냉각 채널 설계 (Heating and Cooling Channel Design of Cross-Shaped Die for Warm Forming of Magnesium Alloy Sheet)

  • 최선철;고동선;김헌영;김형종;홍석무;유수열;신용승
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.370-373
    • /
    • 2008
  • It is known that the temperatures of die, punch, holder and punch pad need to be kept different to get better formability in Mg sheet forming processes. Heating and cooling channels are usually equipped in each tool to assign different temperature. This study focused on the optimal design of the heating and cooling channels for a cross-shaped deep drawing die set. While the die and blankholder were heated to and kept at $250^{\circ}C$ by using heat cartridges, the punch and punch pad were kept at much lower temperature than that of the die and blankholder by water circulating through cooling channels. All the approaches were done by numerical analyses, aiming to maximize the cup height and to minimize the punch corner radius without any failure.

  • PDF

보스-리브 시험 시 펀치 형상 및 마찰 조건에 따른 변형 양상에 대한 연구 (Effect of Punch Design and Friction Condition on Deformation Pattern in Boss and Rib Test)

  • 윤여웅;강성훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.332-337
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitative evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and friction condition on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the heights of the boss and rib. In addition, the effect of flow stress was also investigated on the deformation patterns through FE simulations.

  • PDF

보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향 (Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test)

  • 윤여웅;강성훈;이영선;김병민
    • 소성∙가공
    • /
    • 제18권8호
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

분할가변금형을 이용한 박판의 가변성형공정 연구 (Study of Flexible Forming Process Involving the Use of Sectional Flexible Die for Sheet Material)

  • 허성찬;구태완;송우진;김정;강범수
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.299-305
    • /
    • 2010
  • 가변성형 공정에서 동일한 크기의 성형펀치 배열로 구성된 가변금형을 이용하는 경우 펀치의 크기가 일정하여 성형 가능한 곡률 반경이 제한되기 때문에 비교적 유연성이 낮다. 이에 본 연구에서는 가변금형의 유연성을 높이기 위하여 분할가변금형에 대한 개념을 제안하였다. 임의의 성형면을 형성하기 위하여 두 가지 크기의 펀치로 구성된 펀치 블록을 착안하였다. 상대적으로 큰 곡률 반경을 갖는 성형영역에 대해서는 크기가 큰 펀치 블록을 적용하였으며, 작은 곡률 반경을 갖는 성형영역에 대해서는 작은 크기의 펀치로 구성된 펀치 블록을 적용하였다. 해석적 연구를 토대로 성형된 제품의 단면 형상을 비교하였으며 이로부터 서로 다른 크기의 펀치 블록을 조합하여 구성한 분할가변금형을 이용한 판재의 성형공정이 비교적 복잡한 곡률 반경 분포를 갖는 곡면 가공에 적합함을 확인하였다.

박판 성형공정 유한요소 해석용 마찰모델 (Friction Model for Finite Element Analysis of Sheet Metal Forming Processes)

  • 금영탁;이봉현
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.

Dynamic Load를 이용한 박막 금속 분리판 성형기술 (Forming of Metallic Bipolar Plates by Dynamic Loading)

  • 구자윤;강충길
    • 소성∙가공
    • /
    • 제21권1호
    • /
    • pp.5-12
    • /
    • 2012
  • The weight of the bipolar plate is one of the crucial aspects of improving power density in PEMFC stacks. Aluminum alloys have good mechanical properties such as density, electrical resistivity, and thermal conductivity. Furthermore, using aluminum in a bipolar plate instead of graphite reduces the bipolar plate cost and makes machining easier. Therefore in this study, an aluminum alloy was selected as the appropriate material for a bipolar plate. Results from feasibility experiments with the aim of developing fuel cells consisting of Al bipolar plates with multiple channels are presented. Dynamic loading was applied and the formability of micro channels was estimated as a function of punch pressure and die radius. Sheets of Al5052 with a thickness of 0.3mm were used. For a die radius of 0.1mm the formability was optimized with a sine wave dynamic load of 90kN at maximum pressure and 5 cycles of a sine wave punch travel. The experimental results demonstrate the feasibility of the proposed manufacturing technique for producing bipolar plates.

유한요소법에 의한 합성제륜자 홈의 형상 최적화 (Groove Shape Optimization of a Composition Brake Shoe by Finite Element Method)

  • 구병춘;최경진;옥희동;윤용석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.226-231
    • /
    • 1999
  • A composition brake shoe composed of iron, graphite, kevlar, barium sulphate, etc. was developed for Diesel locomotives. The density distribution of the shoe depends on groove shapes of the shoe (or punch shape). In this study, we investigated the influence of the punch shape on the density distribution, stresses, etc. The inclination of the groove exerts more influence on the density distribution than the groove filet radius.

  • PDF

십자 형상 금형의 디프 드로잉에서 AZ31B 마그네슘 합금판재의 성형 한계 (Forming Limit of AZ31B Magnesium Alloy Sheet in the Deep Drawing with Cross Shaped Die)

  • 황상희;최선철;김헌영;김형종;홍석무;신용승;이근호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.374-377
    • /
    • 2008
  • Magnesium alloy sheets are usually formed at temperatures between $150^{\circ}C$and $300^{\circ}C$ because of their poor formability at room temperature. In the present study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. First, tensile tests and the limit dome height test were carried out at elevated temperatures to get the mechanical properties and forming limit diagram, respectively. And then deep drawing of cross shaped die was tried to get the minimum corner radius and forming limit at specific temperature. Blank shape, punch velocity, minimum corner radius, fillet size, etc, were determined by finite element analysis physical try-outs. Especially, optimum punch and die temperature were suggested through the temperature-deformation analysis using Pam-stamp.

  • PDF

알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향 (Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys)

  • 민경호;서정민;구훈서;비스라;탁상현;이인철;황병복
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

Characterization of Mechanical Properties of Boron Steel Sheet in Hot Bending Process with Various Parameters

  • 이양;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.375-378
    • /
    • 2009
  • Hot press forming is a new forming process which also names as hot stamping. It can greatly enhance the formability of forming parts. This paper researches the formability of boron steel sheet in hot bending process which is a kind of hot press forming. In the text, the influence of hot press forming processing parameters, such as the heating temperature, blank holding force, punch speed and punch and die radius, on the mechanics properties and microstructure of the hot bending parts was analyzed by tension test and the metallographic observation on the parts with various processing parameters. The relationship between blank holding force and punch load was also presented.

  • PDF