• Title/Summary/Keyword: Punch Speed

Search Result 70, Processing Time 0.026 seconds

The Effect of Tool Surface Treatment and Temperature on Deep Drawability of AZ31 Magnesium Alloy Sheet (툴 표면처리 및 온도가 AZ31 마그네슘 판재의 드로잉성에 미치는 영향)

  • Choo D. G.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • The square cup drawing of magnesium alloy AZ31 $(aluminum\;3\%,\;Zinc\;1\%)$ sheets was studied by experimental approach in various temperatures (200, 250, 300, 350, $400^{\circ}C$) when blank holding force (BHF) was controlled in real-time. And so on, the drawability was measured with the different die and punch coating. The square cup drawing test was performed by three different coated punches (CrN, TiCN, Non-coated). BHF was set about 2.0 KN, forming speed was 50 mm/min, blank thickness were 0.5, 1.0mm and the cup size was 40 mm by 60 mm after forming. The experimental data of square cup drawing test show that the tools coating and temperature were effect on the drawbility.

  • PDF

Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Yeom Jong Taek;Kim Nam Yong;Lim Su-Keun;Park Nho Kwang;Kim Jeoung Han
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.202-205
    • /
    • 2005
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmasteer-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

  • PDF

A Research on the Life Span extension of Die Block in Cold Forging Die (냉간단조금형에서 다이블록의 수명연장에 관한 연구)

  • Kim, Sei-Hwan;Choi, Kye-Kwang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.337-340
    • /
    • 2007
  • 냉간단조금형(Cold Forging Die)의 다이블록(Dieblock)을 제작하는 방법 중의 하나로, 다이블록 제작용 재료를 면가공 하여 다이블록 상면(上面)을 마스터펀치(Master Punch)인 호브(Hob)로 압입(Indentaion) 시켜 절삭가공((Cutting Work)이 아닌 다이호빙(Die Hobbing) 방법으로 임프레션(Impression)을 성형하여 제작하고 있다. 이 방법에 의하여 다이블록의 재료를 합금공구강(Alloy Tool Steel)인 SKD11을 사용하여 제작하고, 스테인리스판(Stainless Sheet Metal)을 제품 재료로 하여 냉간단조가공(Cold Forging Work)을 하였더니 6,000 스트로크(Stroke)에서 금형수명(Die Life)을 다 하였다. 본 논문에서는 다이블록 재료를 고속도공구강(High Speed Tool Steel)인 SKH51로 교체 제작하고, 탄소강(Carbon Steel)인 S45C를 제품 재료로 하여 냉간단조가공을 수행 하였더니 21,000 스트로크에서 금형수명을 다하고 종료 되어 종래의 방법과 비교 검토 하였을 때 350%의 금형수명 연장 효과를 얻게 되었다.

  • PDF

A study of trabecular bone strength and morphometric analysis of bone microstructure from digital radiographic image (디지털방사선영상에서 추출한 해면질골의 강도와 미세구조의 형태계측학적 분석에 대한 연구)

  • Han Seung-Yun;Lee Sun-Bok;Oh Sung-Ook;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won;Kim Jong-Dae
    • Imaging Science in Dentistry
    • /
    • v.33 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • Purpose : To evaluate the relationship between morphometric analysis of bone microstructure from digital radiographic image and trabecular bone strength. Materials and Methods : One hundred eleven bone specimens with 5 mm thickness were obtained from the mandibles of 5 pigs. Digital images of specimens were taken using a direct digital intraoral radiographic system. After selection of ROI (100 × 100 pixel) within the trabecular bone, mean gray level and standard deviation were obtained. Fractal dimension and the variants of morphometric analysis (trabecular area, periphery, length of skeletonized trabeculae, number of terminal point, number of branch point) were obtained from ROI. Punch sheer strength analysis was performed using Instron (model 4465, Instron Corp., USA). The loading force (loading speed 1 mm/min) was applied to ROI of bone specimen by a 2 mm diameter punch. Stress-deformation curve was obtained from the punch sheer strength analysis and maximum stress, yield stress, Young's modulus were measured. Results: Maximum stress had a negative linear correlation with mean gray level and fractal dimension significantly (p<0.05). Yield stress had a negative linear correlation with mean gray level, periphery, fractal dimension and the length of skeletonized trabeculae significantly (p < 0.05). Young's modulus had a negative linear correlation with mean gray level and fractal dimension significantly (p < 0.05). Conclusions : The strength of cancellous bone exhibited a significantly linear relationship between mean gray level, fractal dimension and morphometric analysis. The methods described above can be easily used to evaluate bone quality clinically.

  • PDF

Development of Stretch Forming Apparatus using Flexible Die (가변금형을 이용한 스트레치 성형장치 개발)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • A stretch forming method has been widely used in sheet metal forming process. Especially, this process has been adopted in aircraft and high-speed train industries for skin structure forming having a variety of curvature. Until now, solid dies, which are designed with respect to the specific shapes and manufactured as a single piece, have been usually applied to stretch forming process. Therefore, a great number of solid dies has to be developed according to the shapes of the curved skin structure. Accordingly, a flexible die is proposed in this study. It replaces the conventional solid dies with a set of height adjustable punch array. A usefulness of the flexible die is verified through a formability comparison with the solid die using finite element method considering an elastic recovery and the stretch forming apparatus with the flexible die is developed.

Experimental and Analytical Evaluation of Forming Characteristics for AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금판재의 성형특성 평가를 위한 실험적·해석적 연구)

  • Lee, M.G.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • This study aimed at providing an experimental database for the mechanical properties of AZ31B magnesium alloy sheet such as stress-strain curve, yield stress, R-value and forming limit diagram(FLD) at various strain-rates and temperatures. Tensile tests were carried out on specimens having the orientations of $0^{\circ}$, $45^{\circ}$ and $90^{\circ}$ to the rolling direction with different crosshead speeds in the range between 0.008 and 8 mm/s at temperature from 25(room temperature) to $300^{\circ}C$. The influence of the specimen gage length on the tensile properties was investigated. FLD tests were performed at punch speed of 0.1 and 1.0 mm/s in the same temperature range as that of the tensile tests. Swift cup tests were conducted to verify the usefulness of the material database and the reliability of the finite element analysis(FEA). The effects of strain-rate as well as temperature were taken into account in these simulations. It was shown that the FLD-based failure was reasonably well predicted by the thermal-deformation coupled analysis for this rate-sensitive material.

Finite Element Study on Deformation Characteristics and Damage Evolution in Warm Backward Extrusion of AZ31 Mg Alloys (AZ31 마그네슘 합금의 온간 후방압출에서 변형특성과 결함성장에 관한 유한요소해석)

  • Yoon, D.J.;Kim, E.Z.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.614-620
    • /
    • 2007
  • Deformation characteristics and damage evolution during warm backward extrusion of bulk AZ31 Mg alloy were investigated using finite element analyses. AZ31 Mg alloy was assumed as a hardening viscoplastic material. The tensile tests of AZ31 Mg alloy in previous experimental works showed the ductile fracture even at the warm temperature of $175^{\circ}C$. In this study, damage evolution model proposed by Lee and Dawson, which was developed based on the growth of micro voids in hardening viscoplastic materials, was combined into DEFORM 2D. Effects of forming temperature, punch speed, extrusion ratio and size of work piece on formability in warm backward extrusion as well as on mechanical properties of extruded products were examined. In general, finite element predictions matched the experimental observations and supported the analyses based on experiments. Distributions of accumulated damage predicted by the finite element simulations were effective to identify the locations of possible fracture. Finally, it was concluded that the process model, DEFORM2D combined with Lee & Dawson#s damage evolution model, was effective for the analysis of warm backward extrusion of AZ31 Mg alloys.

Design of Hot Heading Process and Evaluation of Mechanical Properties of Alloy718 Coupling Bolt for Gas Turbine (가스터빈용 Alloy718 커플링볼트의 열간 헤딩 공정설계 및 기계적 특성 평가)

  • Choi, H.S.;Lee, J.M.;Ko, D.C.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • Alloy718 is the nickel-base super alloy well used as gas turbine components under severe operating conditions because of its high strength at high temperature and excellent creep resistance. In this study, a coupling bolt for the gas turbine component is manufactured by hot heading process instead of whole machining in order to improve the mechanical properties. Die shape for the hot heading has been designed by general design rule of hot forging and also optimal process condition has been investigated by finite element method. The initial billet temperature and the punch speed have been determined by $1150^{\circ}C$ and 600mm/s on the basis of finite element analysis, respectively. The coupling bolt has been manufactured by 200ton screw press and evaluated by experiment in order to investigate the mechanical properties. As a result of experiment, the mechanical properties such as hardness, tensile strength and creep behavior have been superior to those manufactured by machining.

Design of Vision Based Punching Machine having Serial Communication

  • Lee, Young-Choon;Lee, Seong-Cheol;Kim, Seong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2430-2434
    • /
    • 2005
  • Automatic FPC punching instrument for the improvement of working condition and cost saving is introduced in this paper. FPC(flexible printed circuit) is used to detect the contact position of K/B and button like a cellular phone. Depending on the quality of the printed ink and position of reference punching point to the FPC, the resistance and current are varied to the malfunctioning values. The size of reference punching point is 2mm and the above. Because the punching operation is done manually, the accuracy of the punching degree is varied with operator's condition. Recently, The punching accuracy has deteriorated severely to the 2mm punching reference hall so that assembly of the K/B has hardly done. To improve this manual punching operation to the FPC, automatic FPC punching system is introduced. Precise mechanical parts like a 5-step stepping motor and ball screw mechanism are designed and tested and low cost PC camera is used for the sake of cost down instead of using high quality vision systems for the FA. 3D Mechanical design tool(Pro/E) is used to manage the exact tolerance circumstances and avoid design failures. Simulation is performed to make the complete vision based punching machine before assembly, and this procedure led to the manufacturing cost saving. As the image processing algorithms, dilation, erosion, and threshold calculation is applied to obtain an exact center position from the FPC print marks. These image processing algorithms made the original images having various noises have clean binary pixels which is easy to calculate the center position of print marks. Moment and Least square method are used to calculate the center position of objects. In this development circumstance, Moment method was superior to the Least square one at the calculation of speed and against noise. Main control panel is programmed by Visual C++ and graphical Active X for the whole management of vision based automatic punching machine. Operating modes like manual, calibration, and automatic mode are added to the main control panel for the compensation of bad FPC print conditions and mechanical tolerance occurring in the case of punch and die reassembly. Test algorithms and programs showed good results to the designed automatic punching system and led to the increase of productivity and huge cost down to law material like FPC by avoiding bad quality.

  • PDF

Effects of Transverse Cracks on Stress Distributions of Continuously Reinforced Concrete Tracks Subjected to Train Loads (연속철근 콘크리트궤도의 횡균열이 열차 하중에 의한 응력 분포에 미치는 영향)

  • Bae, Sung Geun;Choi, Seongcheol;Jang, Seung Yup;Cha, Soo Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.355-364
    • /
    • 2014
  • The restrained volume changes of concrete due to variations of temperature and moisture produce transverse cracks in continuously reinforced concrete tracks (CRCTs). Such cracks are known to significantly affect the behaviors and long-term performance of CRCT. To investigate the effects of the transverse cracks on the behavior of CRCT and to develop more reasonable maintenance standards for cracks, in this study, the stress distribution of the track concrete layers (TCL) and the hydraulically stabilized base course (HSB) with transverse cracks were numerically predicted by a three dimensional finite element analysis when CRCT was subjected to train loads. The results indicate that the bending stresses of TCL and vertical stresses at the interfaces between TCL and HSB increased as the cracks were deepened. In addition, vertical stresses were locally concentrated near reinforcing steel in cracks in TCL when full-depth cracks developed, which may lead to punch-outs in CRCTs. Comparably, the effects of crack width and spacing were not as significant as crack depth. This study indicates that ensuring the long-term performance of CRCTs requires adequate maintenance not only for crack width and spacing but also for crack depth. Our results also show that locating HSB joints between sleepers is beneficial to the long-term performance of CRCTs.