• Title/Summary/Keyword: Punch Angle

Search Result 78, Processing Time 0.036 seconds

A Study on the Deformation Characteristics of Blanking Mold by the Change of Punch Shear Angle (블랭킹 금형의 펀치 전단 각 변화에 따른 변형 특성 연구)

  • Jong-Won Song;Tae-Gun Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • Blanking processing is one of the shear processing method in which the cut part becomes a product and piercing processing is a press molding process in which the cut part is discarded as a scrap. The shear angle of the punch used for blanking is determined by conditions such as the characteristics of the shear material, shear thickness and shear length. The shear angle of a punch is an important factor in determining the size of the shear load, the life of the shear punch, the deformation of the shear product and the quality of burrs In this study, blanking punches applied with four types of shear angles (i.e., 0°, 0°23", 0°46", 0°69") to the blanking punches of bracket products used in practical work were manufactured and tested. In the blanking experiment, the remaining variables except for the shear angle were the same. Experiments show that the product has the least amount of deformation in blanking punches with a shear angle equal to the material thickness, i.e., 0°46"..

  • PDF

A Study of the Shearing Force as a Function Trim Punch Shape and Shearing Angle (트리밍펀치 형상과 전단 각에 따른 전단하중 특성에 관한 연구)

  • Yoo, C.K.;Won, S.T.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.77-82
    • /
    • 2015
  • By investigating the practical use of trim punch configurations for shearing of vehicle panels, the current study first reviews the shearing angle as part of the shearing die design. Based on this review, four different types of trim punch shapes (i.e., horizontal, slope, convex, and concave type) and shearing angles(i.e., 0.76°, 1.53°, 2.29°, 3.05°, 3.81°) were investigated. In order to conduct shearing experiments, four types of trim punch dies were made. The four trim punch dies were tested under various conditions. The experiments used the four trim punch shapes and the five shearing angles. The shearing force varied by shape and decreased from horizontal, slope, convex, to concave for the same shearing angle. The magnitude of shearing force showed differences between the convex and the concave shapes due to the influence of constrained shearing versus free shearing. The test results showed that compared to the horizontal trim punch shearing force, the decrease of the slope, convex, and concave shearing forces were 22.6% to 60.4%. Based on the results, a pad pressure of over 30% is suggested when designing a shearing die.

Experimental Investigation on the Serration Process (돌기성형공정에 관한 실험적 연구)

  • Koo, H.S.;Park, Y.S.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • In this paper, experimental investigation has been performed to analyze the forming process of toothed or serrated sheets, which is used as strap engaging surface of the seal to secure together overlapping portions of steel or plastic strapping ligature. Serration formed on the strap engaging surface of the seal prevent from relative slipping between overlapping ligatures after closing the seal. The geometry of tooth on the strap engaging surface is directly related to the quality of securing overlapping ligatures together. Inclined indentation followed by scratching operation has been proposed and applied to the experiments. Punch entry and face angles are selected as process variables to see the influence of these variables on the tooth geometry. Five different punch entry angles have been applied to experiments and three different punch face angles have been selected for each case of punch entry angle. Clay is selected as model material for experiments. Experimental results are summarized in terms of tooth height, tooth width, and aspect ratio such as tooth height to width ratio, respectively.

Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.507-517
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly punch shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear punch test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear punch test tensile strength was increased by increasing the layer thickness.

Effect of Punch Shapes on Failure Instability of Expansion Tube (펀치형상이 팽창튜브의 파단불안전성에 미치는 영향)

  • Choi, Won-Mok;Kwon, Tae-Su;Jung, Hyun-Sung;Kim, Jing-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • The rupture of an expansion tube is mainly affected by the expansion ratio and the external shape of the punch used to expand the tube. In order to prevent the tube from rupture, the effect of the external shape of the punch should be considered in the design. The aim of this paper is to confirm the effect of key design parameters of the punch on rupture of the tube using a finite element analysis with a ductile damage model. The results of the analysis indicated that the expansion ratio of the tube was mainly affected by variation of the radius of the punch. However, the rupture was more affected by variation of the punch angle than the radius of the punch. The existence of a specific punch angle at which rupture did not occur, even if the radius of the punch was increased, was found from the results.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

Design of punch shape for reducing the punch wear in the backward extrusion (후방 압출 펀치의 마멸 저감을 위한 금형 형상 설계)

  • 박태준;이동주;김동진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation for the die wear is too hard because the prediction of the die wear is determined with many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard's wear model in order to reduce the rapid wear rate that is generated for the backward extrusion product exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat, angle, and round of the punch nose part. As the flat and angle of the punch nose are larger, the surface expansion is reduced. and, the wear rate is decreased according to the reduction of the punch round. These results obtained through this study are applied to the real manufacturing process, it is implemented the reduction of the wear rate.

  • PDF

Design of Punch Shape for Reducing the Punch Wear in the Backward Extrusion (후방 압출 펀치의 마멸 저감을 위한 펀치 형상 설계)

  • Kim Dong Hwan;Lee Jung Min;Kim Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.180-187
    • /
    • 2004
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation fur the die wear is too hard because the die wear is caused by many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard wear model in order to reduce the rapid wear rate that is generated for the backward extruded products exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat diameter, angle, and round of the punch nose part. As the flat diameter and angle of the punch nose are larger, the surface expansion is reduced and the wear rate is decreased according to the reduction of the punch round. These results obtained through this study can be applied to the real manufacturing process.

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

A study on the prediction of punch wear level through analysis of piercing load of aluminum (알루미늄 홀 가공 하중 분석을 통한 펀치 마모수준 예측에 관한 연구)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.46-51
    • /
    • 2022
  • The piercing process of creating holes in sheet metals for mechanical fastening generates high shear force. Real-time monitoring technology could predict tool damage and product defects due to this severe condition, but there are few applications for piercing high-strength aluminum. In this study, we analyzed the load signal to predict the punch's wear level during the process with a piezoelectric sensor installed piercing tool. Experiments were conducted on Al6061 T6 with a thickness of 3.0 mm using piercing punches whose edge angle was controlled by reflecting the wear level. The piercing load increases proportionally with the level of tool wear. For example, the maximum piercing load of the wear-shaped punch with the tip angle controlled at 6 degrees increased by 14% compared to the normal-shaped punch under the typical clearance of 6.7% of the aluminum piercing tool. In addition, the tool wear level increased compression during the down-stroke, which is caused by lateral force due to the decrease in the diameter of pierced holes. Our study showed the predictability of the wear level of punches through the recognition of changes in characteristic elements of the load signal during the piercing process.