• Title/Summary/Keyword: Pump-Turbine Runner

Search Result 13, Processing Time 0.019 seconds

Modal Testing on a High Head Pump/Turbine Runner (고낙차 수력 펌프/터빈 런너에 대한 모우드 실험)

  • 류석주;하현천;김호종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.278-282
    • /
    • 1997
  • This paper describes results of modal testing for a high head pump-turbine runner of the Muju pumped storage power plant. The head of the pump-turbine is 601 m and the outside diameter of its runner is 4,410 mm. The modal testing was done for two conditions : 1) the runner in air ; 2) the runner in water. For both conditions, obtained are natural frequencies, corresponding mode shapes and damping ratios. From the testing, it is found that the natural frequencies of the pump-turbine runner in water is reduced approximately 40 % due to additional mass effect of the water.

  • PDF

Modal Analysis and Testing of a High Head Pump/Turbine Runner (고낙차 수력 펌프/터빈 런너에 대한 진동 모드해석 및 실험)

  • 류석주;하현천
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1062-1068
    • /
    • 1998
  • This paper describes the vibration characteristics of a high head pump-turbine runner. with nine blades and an outer diameter of 4.410 mm. of the pumped storage power plant. Mode shapes and natural frequencies were obtained by means of both the finite element analysis and modal testing. both in air and in water. The natural frequencies in air were calculated using the finite element method by ANSYS software. In order to confirm calculation results. the natural frequencies and mode shapes of the runner were measured using a hydraulic exciter both in air and in water. Natural frequencies of the pump-turbine runner were found at 174. 310 Hz in air, and at 107. 184 Hz in water. The first mode shape is flat plate mode with two nodal diameter and the second one is also flat plate mode with three nodal diameter. It can be shown that the natural frequencies of the pump-turbine runner in water is reduced approximately 40 % due to additional mass effect. Natural frequencies in air predicted by ANSYS software are in good agreement with test results.

  • PDF

Pressure Pulsation Characteristics of a Model Pump-turbine Operating in the S-shaped Region: CFD Simulations

  • Xia, Linsheng;Cheng, Yongguang;Cai, Fang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • The most detrimental pressure pulsations in high-head pump-turbines is caused by the rotor-stator interaction (RSI) between the guide vanes and runner blades. When the pump-turbine operates in the S-shaped region of the characteristic curves, the deteriorative flow structures may significantly strengthen RSI, causing larger pressure pulsations and stronger vibration with an increased risk of mechanical failure. CFD simulations were carried out to analyze the impacts of flow evolution on the pressure pulsations in the S-shaped region of a model pump-turbine. The results show that the reverse flow vortex structures (RFVS) at the runner inlet have regular development and transition patterns when discharge reduces from the best efficiency point (BEP). The RFVS first occur at the hub side, and then shift to the mid-span near the no-load point, which cause the strongest pressure pulsations. The locally distributed RFVS at hub side enhance the local RSI and makes the pressure fluctuations at the corresponding sections stronger than those at the rest sections along the spanwise direction. Under the condition of RFVS at the mid-span, the smaller flow rate make the smaller difference of pressure pulsation amplitudes in the spanwise direction. Moreover, the rotating stall, rotating at 35.7%-62.5% of the runner rotational frequency, make the low frequency components of pressure pulsations distribute unevenly along the circumference in the vaneless space. However, it have little influence on the distributions of high components.

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun-Cheon;Choi, Seong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.27-31
    • /
    • 1999
  • This paper describes the shaft vibration phenomena measured on a pump-turbine of a pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine is varied from 100 to 300 MW in the generating mode. The magnitude of the shaft vibration highly depends on the power load. The vibration magnitude of the shaft is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration is low. From nitration spectra, it is shown that the frequency of major nitration in that load zone is 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component does not occur below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, the shaft vibration is highly decreased due to an increased bearing preload.

  • PDF

Characteristics of the Shaft Vibration in a High Head Pump-Turbine (고낙차 펌프-터빈에서의 축계 진동 특성)

  • Ha, Hyun Cheon;Choi, Seong Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

Vibration Behavior and Dynamic Stress of Runners of Very High Head Reversible Pump-turbines

  • Tanaka, Hiroshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.289-306
    • /
    • 2011
  • In the development of very high head pumped storage projects, one of the critical problems is the strength of pumpturbine runners. Data obtained by stress measurements of high head pump-turbine runners indicated that dynamic stress due to the vibration of runner might be detrimental, possibly to cause fatigue failure, if the runner were designed without proper consideration on its dynamic behaviour. Numerous field stress measurements of runners and model tests conducted with hydrodynamic similarity revealed that the hydraulic excitation force developed by the interference of rotating runner blades with guide vane wakes sometimes would induce such heavy vibration of runner. Theoretical and experimental investigations on both the hydraulic excitation force and the natural frequencies of runner have been conducted to explore this forced vibration problem.

Investigation into the Internal Flow Characteristics of a Pump-turbine Model

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • This is a study about one of the most widely used hydro machinery all over the world - pump-turbine. The system has an impeller which pumps water to an upper reservoir during the night and the same impeller acts as a runner for turbine mode during the day for providing stable electrical power to the grid. The internal flow analysis is investigated in this study to help understand how the water passes through the passage of the vanes and blades, providing the designer with useful information on the behavior of recirculation flows which could reduce the efficiency of the pump-turbine. The 100 kW pump-turbine model has H = 32 m, $Q=0.336m^3/s$ and $N=1200min^{-1}$. For this study there are 7 blades, 19 stay vanes and 20 guide vanes. From this study, it was observed that this pump-turbine design showed very good internal flow characteristics with no flow separation and no recirculation flows in normal operation mode.

Vibration Analysis of Hydraulic Turbine-Generator Rotor (수차발전기 축계의 진동해석)

  • 김용한;손병구;최병근;양보석;하현천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.250-254
    • /
    • 1998
  • Pump-storage power plants, which pumps water from the lower reservoir to the upper reservoir using the extra electronic power at night and generates the electronic power in the daytime, are more increasing. Currently it has a tendency to be high-head large-capacity machines. So in the processing of design, we need to know the vibration characteristics of pump-turbine shaft system sufficiently. In this paper, we developed the computer programs for analyzing pump-turbine shaft system considering magnetic force of generator, hydraulic force at runner, dynamic characteristics of guide bearings and the effect of add mass of water. And the superiority of this program was verified by applying it to the real model and calculating high quality critical speed, natural mode and unbalance response.

  • PDF

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

A New Concept of Hydraulic Design of Water Turbine Runners

  • Vesely, Jindrich;Pochyly, Frantisek;Obrovsky, Jiri;Mikulasek, Josef
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • Vibrations at different frequencies with a different intensity as well as a pressure pulsation with different parameters are two phenomena which can be observed at different water turbines. Due to the vibration and the pressure pulsation some restrictions of water turbine operation range are applied. Similar problems with the efficiency level in a wide water turbine operation range are the basic problems which are solved for ages. A theoretical and practical solution of the above mentioned problems is very much time and money consuming. The paper describes a new theoretical solution of the excitation and pressure pulsation decrease as well as extension of the operational range with high efficiency level. The new concept to decrease the vibrations and pressure pulsations is based on a heterogeneous runner blade geometry generation. The new concept of the runner geometry design was numerically tested at a low specific speed pump turbine, see Fig. 1, and basic points of the concept are presented in this paper.